[1] |
白宝明, 孙韶辉, 王加庆. 5G移动通信中的信道编码[M]. 北京: 电子工业出版社, 2020:99.
|
[2] |
童胜, 王鹏, 王单, 等. LDPC码量化和积译码的高效实现[J]. 西安电子科技大学学报, 2004, 31(5):709-713.
|
|
TONG Sheng, WANG Peng, WANG Dan, et al. Efficient Implementation of the Sum-Product Algorithm for Quantized Decoding of LDPC Codes[J]. Journal of Xidian University, 2004, 31(5):709-713.
|
[3] |
HATAMI H, MITCHELL D G M, COSTELLO D J, et al. Performance Bounds and Estimates for Quantized LDPC Decoders[J]. IEEE Transactions on Communications, 2020, 68(2):683-696.
doi: 10.1109/TCOMM.2019.2953232
|
[4] |
GHANAATIAN R, BALATSOUKAS-STIMMING A, MULLER T C, et al. A 588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(2):329-340.
doi: 10.1109/TVLSI.2017.2766925
|
[5] |
COCHACHIN F, BOUTILLON E, DECLERCQ D. Sign-Preserving Min-Sum Decoders[J]. IEEE Transactions on Communications, 2021, 69(10):6439-6454.
doi: 10.1109/TCOMM.2021.3099173
|
[6] |
TISHBY N, PEREIRA F C, BIALEK W. The Information Bottleneck Method[C]// Proceedings of Allerton Conference on Communications. Monticello: Comput, 1999:368-377.
|
[7] |
LEWANDOWSKY J, STARK M, BAUCH G. Optimum Message Mapping LDPC Decoders Derived from the Sum-Product Algorithm[C]//IEEE International Conference on Communications. Piscataway: IEEE, 2016:1-6.
|
[8] |
LEWANDOWSKY J, BAUCH G, TSCHAUNER M, et al. Design and Evaluation of Information Bottleneck LDPC Decoders for Software Defined Radios[C/OL].[2021-12-01].DOI:10.1109/ICSPCS.2018.8631719.
doi: 10.1109/ICSPCS.2018.8631719
|
[9] |
LEWANDOWSKY J, BAUCH G. Information-Optimum LDPC Decoders Based on the Information Bottleneck Method[J]. IEEE Access, 2018, 6(17):4054-4071.
doi: 10.1109/ACCESS.2018.2797694
|
[10] |
STARK M, LEWANDOWSKY J, BAUCH G. Information-Bottleneck Decoding of High-Rate Irregular LDPC Codes for Optical Communication Using Message Alignment[J/OL].[2021-12-02].DOI:10.3390/app8101884.
doi: 10.3390/app8101884
|
[11] |
STARK M, BAUCH G, LEWANDOWSKY J, et al. Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method[C]// 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019:1-6.
|
[12] |
STARK M, WANG L, BAUCH G, et al. Decoding Rate-Compatible 5G-LDPC Codes With Coarse Quantization Using the Information Bottleneck Method[J]. IEEE Open Journal of the Communications Society, 2020, 1:646-660.
doi: 10.1109/OJCOMS.2020.2994048
|
[13] |
SUN W, ZHENG J. A Discrete Detection and Decoding of MLC NAND Flash Memory with Retention Noise[J/OL].[2021-11-22].DOI:10.1109/ACCESS.2020.2983433.
doi: 10.1109/ACCESS.2020.2983433
|
[14] |
MOHR P, BAUCH G, YU F, et al. Coarsely Quantized Layered Decoding Using the Information Bottleneck Method[C]// 2021 IEEE International Conference on Communications. Piscataway: IEEE, 2021:1-6.
|
[15] |
RABINER L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J]. Proceedings of IEEE, 1989, 77(2):257-286.
doi: 10.1109/5.18626
|
[16] |
KIM J, SUNG W. Rate-0.96 LDPC Decoding VLSI for Soft-Decision Error Correction of NAND Flash Memory[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 22(5):1004-1015.
doi: 10.1109/TVLSI.2013.2265314
|
[17] |
ZHANG Z, ANANTHARAM V, WAINWRIGHT M J, et al. An Efficient 10GB ASE-T Ethernet LDPC Decoder Design with Low Error Floors[J]. IEEE Journal of Solid-State Circuits, 2010, 45(4):843-855.
doi: 10.1109/JSSC.2010.2042255
|