[1] |
岳彩旭, 高海宁, 刘献礼. 基于动态切削力系数的插铣加工过程稳定性研究[J]. 机械工程学报, 2017, 53(17):193-201.
doi: 10.3901/JME.2017.17.193
|
|
YUE Caixu, GAO Haining, LIU Xianli. Research on the Stability of the Machining Process Based on the Dynamic Cutting Force Coefficient[J]. Journal of Mechanical Engineering, 2017, 53(17):193-201.
doi: 10.3901/JME.2017.17.193
|
[2] |
ABOU-EL-HOSSEIN K A, KADIRGAMA K, HAMDI M, et al. Prediction of Cutting Force in End-Milling Operation of Modified AISI P20 Tool Steel[J]. Journal of Materials Processing Technology, 2007, 182(1):241-247.
doi: 10.1016/j.jmatprotec.2006.07.037
|
[3] |
OZTURK B, LAZOGLU I. Machining of Free-Form Surfaces.Part I:Analytical Chip Load[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7-8):728-735.
doi: 10.1016/j.ijmachtools.2005.07.038
|
[4] |
SINGH K K, KARTIK V, SINGH R. Modeling Dynamic Stability in High-Speed Micromilling of Ti-6Al-4V via Velocity and Chip Load Dependent Cutting Coefficients[J]. International Journal of Machine Tools & Manufacture, 2015, 96:56-66.
doi: 10.1016/j.ijmachtools.2015.06.002
|
[5] |
JIA Z Y, GE J, MA J W, et al. A New Cutting Force Prediction Method in Ball-End Milling Based on Material Properties for Difficult-to-Machine Materials[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9-12):1-16.
doi: 10.1007/s00170-015-8131-x
|
[6] |
赵晶晶, 覃寿同, 林强, 等. 基于Deform-3D的65Mn硬态切削加工仿真研究[J]. 机床与液压, 2014, 42(23):131-133.
|
|
ZHAO Jingjing, QIN Shoutong, LIN Qiang, et al. Simulation Study on Hard Cutting Machining Based on Deform-3D[J]. Machine Tool & Hydraulics, 2014, 42(23):131-133.
|
[7] |
胡波, 赵先锋, 史红艳, 等. TC4钛合金切削过程切削力的预测[J]. 机床与液压, 2021, 49(22):155-159.
|
|
HU Bo, ZHAO Xianfeng, SHI Hongyan, et al. Prediction of Cutting Force in the Cutting Process of TC4 Titanium Alloy[J]. Machine Tool and Hydraulics, 2021, 49(22):155-159.
|
[8] |
王帅洁, 许金凯, 刘启蒙, 等. Inconel 718微切削最小切削厚度有限元仿真与试验研究[J]. 工具技术, 2021, 55(10):28-34.
|
|
WANG Shuaijie, XU Jinkai, LIU Qimeng, et al. Finite Element Simulation and Experimental Research on Minimum Cutting Thickness of Inconel 718 Micro-Cutting[J]. Tool Technology, 2021, 55(10):28-34.
|
[9] |
KILICKAP E, YARDIMEDEN A, SELIK Y H. Mathematical Modelling and Optimization of Cutting Force,Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S[J]. Applied Sciences, 2017, 7(10):1064.
doi: 10.3390/app7101064
|
[10] |
李鑫, 史振宇, 蒋森河, 等. 人工神经网络预测刀具磨损和切削力[J]. 控制理论与应用, 2018, 35(12):1731-1737.
|
|
LI Xin, SHI Zhenyu, JIANG Senhe, et al. Artificial Neural Network Predicts Tool Wear and Cutting Force[J]. Control Theory & Applications, 2018, 35(12):1731-1737.
|
[11] |
JURKOVIC Z, CUKOR G, BREZOCNIK M, et al. A Comparison of Machine Learning Methods for Cutting Parameters Prediction in High Speed Turning Process[J]. Journal of Intelligent Manufacturing, 2018, 29(8):1683 -1693.
doi: 10.1007/s10845-016-1206-1
|
[12] |
周鑫, 李迎光, 刘浩, 等. 基于特征的飞机复杂结构件切削力快速预测与评价方法[J]. 中国机械工程, 2015, 26(7):886-891.
|
|
ZHOU Xin, LI Yingguang, LIU Hao, et al. A Feature-Based Cutting Force Fast Prediction and Evaluation for Complex Aircraft Structure Parts[J]. China Mechanical Engineering, 2015, 26(07):886-891.
|
[13] |
WEISS K, KHOSHGOFTAAR T M, WANG D D. A Survey of Transfer Learning[J]. Journal of Big Data, 2016, 3(1):9.
doi: 10.1186/s40537-016-0043-6
|
[14] |
许悦雷, 朱明明, 马时平, 等. 迁移学习结合难分样本挖掘的机场目标检测[J]. 西安电子科技大学学报, 2018, 45(5):190-196.
|
|
XU Yuelei, ZHU Mingming, MA Shiping, et al. Airport Object Detection Combining Transfer Learning and Hard Example Mining[J]. Journal of Xidian University, 2018, 45(5):190-196.
|
[15] |
陈祝云, 钟琪, 黄如意, 等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报, 2021, 57(21):96-105.
doi: 10.3901/JME.2021.21.096
|
|
CHEN Zhuyun, ZHONG Qi, HUANG Ruyi, et al. Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network[J]. Journal of Mechanical Engineering, 2021, 57(21):96-105.
doi: 10.3901/JME.2021.21.096
|
[16] |
王俊成, 邹斌. 基于迁移学习的切削力神经网络预测模型优化策略[J]. 组合机床与自动化加工技术, 2021(5):43-46.
|
|
WANG Juncheng, Zou Bin. Optimization Strategy of Neural Network Prediction Model for Cutting Force Based on Transfer Learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(5):43-46.
|
[17] |
梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报:自然科学版, 2019, 59(7):523-529.
|
|
LIANG Jie, CHEN Jiahao, ZHANG Xueqin, et al. One-Hot Encoding and Convolutional Neural Network Based Anomaly Detection[J]. Journal Tsinghua University:Science & Technology, 2019, 59(7):523-529.
|
[18] |
PARDOE D, STONE P. Boosting for Regression Transfer[C/OL].[2021-11-02].www.doc88.com/p-086381766999.html .
|
[19] |
TANG Dongjie, YANG Xiaohan, WANG Xuesong. Improving the Transferability of the Crash Prediction Model Using the TrAdaBoost.R2 Algorithm[J]. Accident Analysis and Prevention, 2020, 141:105551.
doi: 10.1016/j.aap.2020.105551
|
[20] |
向国齐, 陆涛. 基于支持向量机钛合金铣削力预测分析[J]. 机床与液压, 2016, 44(3):142-146.
|
|
XIANG Guoqi, LU Tao. Prediction Analysis of Titanium Alloy Milling Force Based on Support Vector Machine[J]. Machine Tool & Hydraulics, 2016, 44(3):142-146.
|
[21] |
CHEN T Q, GUESTRIN C. XGBoost:a Scalable Tree Boosting System[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:785-794.
|
[22] |
SUN B, FENG J, SAENKO K. Return of Frustratingly Easy Domain Adaptation[C/OL].[2021-11-04]. https://arxiv.org/abs/1511.05547 .
|