Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (5): 166-174.doi: 10.19665/j.issn1001-2400.2022.05.019
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
REN Jiaxing1(),CAO Yudong1(),CAO Rui2(),YAN Jia1()
Received:
2021-09-30
Online:
2022-10-20
Published:
2022-11-17
CLC Number:
REN Jiaxing, CAO Yudong, CAO Rui, YAN Jia. Algorithm for classification of few-shot images by dynamic subspace[J].Journal of Xidian University, 2022, 49(5): 166-174.
[1] | 刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2):297-315. |
LIU Ying, LEI Yanbo, FAN Jiulun, et al. Survey on Image Classification Technology Based on Small Sample Learning[J]. Acta Automatica Sinica, 2021, 47(2):297-315 | |
[2] | 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369. |
ZHAO Kailin, JIN Xiaolon, WANG Yuanzhuo. Survey on Few-shot Learning[J]. Journal of Software, 2021, 32(2):349-369. | |
[3] | 宋闯, 赵佳佳, 王康, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(z1):12-25. |
SONG Chuang, ZHAO Jiajia, WANG Kang, et al. A Survey of Few Shot Learning Based on Intelligent Perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(z1):12-25. | |
[4] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching Networks for One Shot Learning[J]. Advances in Neural Information Processing Systems, 2016, 29:3630-3638. |
[5] | KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese Neural Networks for One-Shot Image Recognition[C]// Proceedings of the ICML Deep Learning Workshop. Piscataway: IEEE, 2015:1-30. |
[6] | SNELL J, SWERSKY K, ZEMEL R S. Prototypical Networks for Few-Shot Learning[J]. Advances in Neural Information Processing Systems, 2017, 30:197-209. |
[7] | LI H, EIGEN D, DODGE S, et al. Finding Task-Relevant Features for Few-Shot Learning by Category Traversal[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1-10. |
[8] | PEREZ-RUA J M, ZHU X, HOSPEDALES T, et al. Incremental Few-Shot Object Detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:13846-13855. |
[9] | SIMON C, KONIUSZ P, NOCK R, et al. Adaptive Subspaces for Few-Shot Learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:4136-4145. |
[10] | LIANG X, WANG X, ZHEN L, et al. Soft-Margin Softmax for Deep Classification[C]// Proceedings of the International Conference on Neural Information Processing. Piscataway: IEEE, 2017:413-421. |
[11] |
JIANG Q, YAN X. Parallel PCA-KPCA for Nonlinear Process Monitoring[J]. Control Engineering Practice, 2018, 80:17-25.
doi: 10.1016/j.conengprac.2018.07.012 |
[12] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. |
[13] |
KANG X, XIANG X, LI S, et al. PCA-Based Edge-Preserving Features for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7140-7151.
doi: 10.1109/TGRS.2017.2743102 |
[14] |
HARANDI M, HARTLEY R, SHEN C, et al. Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds[J]. International Journal of Computer Vision, 2015, 114(2):113-136.
doi: 10.1007/s11263-015-0833-x |
[15] | HE K, GIRSHICK R, DOLLÁR P. Rethinking ImageNet Pre-Training[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:4918-4927. |
[16] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2012:1097-1105. |
[17] |
EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal Visual Object Classes Challenge:A Retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5 |
[18] |
CHERRY J M, ADLER C, BALL C A. SGD:Saccharomyces Genome Database[J]. Nucleic Acids Research, 1998, 26(1):73-79.
doi: 10.1093/nar/26.1.73 |
[19] | FINN C, ABBEEL P, LEVINE S. Model-Agnostic Meta-learning for Fast Adaptation of Deep Networks[C]// Proceedings of the International Conference on Machine Learning. Sydney: ACM, 2017:1126-1135. |
[20] | MUNKHDALAI T, YU H. Meta Networks[C]// Proceedings of the International Conference on Machine Learning. New York: ACM, 2017:2554-2563. |
[21] | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet:Representative-Based Metric Learning for Classification and Few-Shot Object Detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:5197-5206. |
[22] | GIDARIS S, KOMODAKIS N. Dynamic Few-Shot Visual Learning Without Forgetting[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4367-4375. |
[23] | LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-Learning with Differentiable Convex Optimization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:10657-10665. |
[1] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[2] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[3] | ZHAN Keyu,SUN Yue,LI Ying. Video super-resolution based on multi-scale 3D convolution [J]. Journal of Xidian University, 2021, 48(5): 8-14. |
[4] | CHENG Lei,WANG Yue,TIAN Chunna. Residual attention mechanism for visual tracking [J]. Journal of Xidian University, 2020, 47(6): 148-157. |
[5] | LIU Daohua,WANG Shasha,YANG Zhipeng,CUI Yushuang. Improved face image classification method based on the local embedding network [J]. Journal of Xidian University, 2020, 47(4): 18-23. |
[6] | SONG Jianfeng,WEI Yue,MIAO Qiguang,QUAN Yining,CHEN Yusheng. Urine cell image classification algorithm based on the squeeze and excitation mechanism [J]. Journal of Xidian University, 2020, 47(2): 39-45. |
[7] | LIU Shudong,WANG Xiaomin,ZHANG Yan. Symmetric residual convolution neural networks for the image super-resolution reconstruction [J]. Journal of Xidian University, 2019, 46(5): 15-23. |
[8] | CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi. Face image super-resolution with an attention mechanism [J]. Journal of Xidian University, 2019, 46(3): 148-153. |
[9] | GUO Jichang,HE Yanhong,WEI Huiwen. Image steganalysis based on the modularized residual network [J]. Journal of Xidian University, 2019, 46(1): 79-85. |
[10] | LI Xue, AI Lirong, ZHOU Xiaojing, ZHANG Kai. Automatic assessment of children's vision [J]. Journal of Xidian University, 2018, 45(6): 150-155. |
[11] | SUN Chen, CHENG Liye. Spatial sensing matrix learning for PolSAR image classification [J]. Journal of Xidian University, 2018, 45(6): 92-98. |
[12] | CHEN Bo;WANG Shuang;JIAO Licheng;LIU Fang;MAO Shasha. Polarimetric SAR image classification via naive Bayes combination [J]. J4, 2015, 42(2): 45-51. |
[13] | HAN Bing;QIU Wenliang. Aurora images classification via features salient coding [J]. J4, 2013, 40(6): 180-186. |
[14] | YANG Xi;LI Jie;HAN Bing;GAO Xinbo. Wavelet hierarchical model for aurora images classification [J]. J4, 2013, 40(2): 18-24. |
[15] | KONG Yueping;ZENG Ping;ZHANG Yuepeng. Classification and recognition algorithm for the halftone image [J]. J4, 2011, 38(5): 52-58+183. |
|