Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (3): 122-131.doi: 10.19665/j.issn1001-2400.2023.03.012
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
WANG Juan(),LIU Zishan(),WU Minghu(),CHEN Guanhai(),GUO Liquan()
Received:
2022-06-29
Online:
2023-06-20
Published:
2023-10-13
Contact:
Minghu WU
E-mail:happywj@hbut.edu.cn;369432554@qq.com;wuxx1005@hbut.edu.cn;245604832@qq.com;2544508227@qq.com
CLC Number:
WANG Juan,LIU Zishan,WU Minghu,CHEN Guanhai,GUO Liquan. Multi-scale object detection algorithm combined with super-resolution reconstruction technology[J].Journal of Xidian University, 2023, 50(3): 122-131.
"
算法 | Backbone | 参数量/M | AP50/% | AP75/% | AP5095/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv3-tiny | Darknet-53 | 8.80 | 34.80 | 17.60 | |||||||
YOLOv3 | Darknet-53 | 61.90 | 63.00 | 43.30 | |||||||
YOLOv5-s | Modified CSP v5 | 7.23 | 57.20 | 40.30 | 37.40 | ||||||
YOLOv5-m | Modified CSP v5 | 21.17 | 64.40 | 49.00 | 45.30 | ||||||
YOLOX-s | Modified CSP v5 | 8.97 | 59.40 | 42.90 | 40.00 | ||||||
YOLOX-m | Modified CSP v5 | 25.33 | 65.50 | 50.10 | 46.30 | ||||||
文中算法-s | Modified CSP v5 | 9.26 | 60.20 | 44.50 | 41.30 | ||||||
文中算法-m | Modified CSP v5 | 25.88 | 66.20 | 51.20 | 47.50 | ||||||
算法 | FPS/(f·s-1) | APS/% | APM/% | APL/% | ARS/% | ARM/% | ARL/% | ||||
YOLOv3-tiny | 140.10 | ||||||||||
YOLOv3 | 88.20 | ||||||||||
YOLOv5-s | 156.30 | 21.20 | 42.30 | 49.10 | 37.80 | 62.50 | 72.20 | ||||
YOLOv5-m | 112.40 | 27.90 | 50.50 | 58.10 | 45.30 | 68.50 | 77.70 | ||||
YOLOX-s | 138.10 | 22.90 | 44.30 | 53.70 | 34.40 | 60.30 | 69.90 | ||||
YOLOX-m | 98.60 | 28.60 | 51.20 | 61.60 | 42.00 | 65.80 | 75.40 | ||||
文中算法-s | 134.40 | 24.10 | 45.50 | 55.00 | 38.60 | 63.80 | 74.10 | ||||
文中算法-m | 96.50 | 30.00 | 51.90 | 62.90 | 45.20 | 68.60 | 78.20 |
"
算法 | mAP | 鸟 | 船 | 瓶子 | 植物 | 椅子 | 飞机 | 自行车 | 公交车 | 小汽车 | 猫 |
---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv3-tiny | 54.10 | 45.80 | 39.70 | 43.60 | 35.40 | 39.10 | 57.40 | 69.50 | 60.80 | 74.00 | 49.40 |
YOLOv5-s | 76.50 | 74.00 | 64.00 | 66.90 | 51.60 | 58.70 | 87.50 | 85.40 | 82.10 | 89.90 | 80.10 |
YOLOX-s | 79.85 | 77.49 | 72.32 | 70.15 | 59.39 | 62.59 | 87.75 | 87.54 | 86.06 | 89.21 | 82.33 |
文中算法-s | 81.13 | 79.62 | 74.30 | 71.48 | 60.29 | 64.97 | 88.00 | 88.61 | 87.23 | 89.33 | 83.09 |
算法 | 牛 | 餐桌 | 狗 | 马 | 摩托车 | 人 | 羊 | 沙发 | 火车 | 电视监视器 | |
YOLOv3-tiny | 61.90 | 41.00 | 45.40 | 65.20 | 70.80 | 71.40 | 60.00 | 40.00 | 52.40 | 59.40 | |
YOLOv5-s | 80.90 | 67.50 | 78.30 | 88.0 | 82.90 | 86.40 | 75.00 | 70.90 | 84.40 | 75.70 | |
YOLOX-s | 83.40 | 76.10 | 81.63 | 89.02 | 86.20 | 86.53 | 80.12 | 74.84 | 84.30 | 80.03 | |
文中算法-s | 84.82 | 77.03 | 83.51 | 89.85 | 87.86 | 86.98 | 81.54 | 76.31 | 85.96 | 81.89 |
[1] | HAO Z, LIU Y, QIN H, et al. Scale-Aware Face Detection[C]//Computer Vision & Pattern Recognition. Piscataway:IEEE, 2017:1913-1922. |
[2] | SINGH B, DAVIS L S. An Analysis of Scale Invariance in Object Detection-SNIP[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2018:3578-3587. |
[3] | SINGH B, NAJIBI M, DAVIS L S. SNIPER:Efficient Multi-Scale Training[C]// Neural Information Processing Systems. New York: ACM, 2018:9310-9320. |
[4] | LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot MultiBox Detector[C]//European Conference on Computer Vision. Heidelberg:Springer, 2016:21-37. |
[5] | CAI Z, FAN Q, FERIS R S, et al. A Unified Multi-Scale Deep Convolutional Neural Network for Fast Object Detection[C]//European Conference on Computer Vision. Heidelberg:Springer, 2016:354-370. |
[6] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2017:2117-2125. |
[7] | LIU S, QI L, QIN H, et al. Path Aggregation Network for Instance Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2018:8759-8768. |
[8] | KONG T, SUN F, TAN C, et al. Deep Feature Pyramid Reconfiguration for Object Detection[C]//Proceedings of the European Conference on Computer Vision (ECCV). Heidelberg:Springer, 2018:169-185. |
[9] | HE K, ZHANG X, REN S, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2015, 37(9):1904-1916. |
[10] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149. |
[11] | REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:Unified,Real-Time Object Detection[C]//Computer Vision & Pattern Recognition. Piscataway:IEEE, 2016:779-788. |
[12] | WANG C Y, LIAO H, WU Y H, et al. CSPNet:A New Backbone that can Enhance Learning Capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:IEEE, 2020:1571-1580. |
[13] | LI J, PEI Z, ZENG T. From Beginner to Master:A Survey for Deep Learning-Based Single-Image Super-Resolution (2021)[J/OL].[2021-09-29]. https://arxiv.org/abs/2109.14335. |
[14] | XIAO J, TAO Z, YAO Y, et al. Context Augmentation and Feature Refinement Network for Tiny Object Detection[C]//Proceedings of the Tenth International Conference on Learning Representations. Virtual:ICLR, 2022:1-11. |
[15] | SHI W, CABALLERO J, F HUSZÁR, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2016:1874-1883. |
[16] | LIM J S, ASTRID M, YOONH J, et al. Small Object Detection Using Context and Attention[C]//Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway:IEEE, 2021:181-186. |
[17] | WANG Q, WU B, ZHU P, et al. ECA-Net:Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2020:11531-11539. |
[18] | 刘迪, 郭继昌, 汪昱东, 张怡. 融合注意力机制的多尺度显著性目标检测网络[J]. 西安电子科技大学学报, 2022, 49(4):118-126. |
LIU Di, GUO Jichang, WANG Yudong, et al. Multi-Scale Salient Object Detection Network Combiningan Attention Mechanism[J]. Journal of Xidian University, 2022, 49(4):118-126. | |
[19] | HE J, ERFANI S, MA X, et al. Alpha-IoU:A Family of Power Intersection over Union Losses for Bounding Box Regression[J]. Advances in Neural Information Processing Systems, 2021, 34:20230-20242. |
[20] |
DE BOER P T, KROESE D P, MANNOR S, et al. A Tutorial on the Cross-Entropy Method[J]. Annals of Operations Research, 2005, 134(1):19-67.
doi: 10.1007/s10479-005-5724-z |
[21] | EVERINGHAM M. The PASCAL Visual Object Classes Challenge 2007(2007)[R/OL].[2009-12-31].// http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. |
[22] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:Common Objects in Context[C]//European Conference on Computer Vision. Heidelberg:Springer, 2014:740-755. |
[23] |
DENG B, LV H. Survey of Target Detection Based on Neural Network[J]. Journal of Physics:Conference Series, 2021, 1952(2):022055.
doi: 10.1088/1742-6596/1952/2/022055 |
[24] | REDMON J, FARHADI A. Yolov3:An Incremental Improvement (2018)[J/OL].[2018-04-08]. https://arxiv.org/abs/1804.02767. |
[25] | GE Z, LIU S, WANG F, et al. Yolox:Exceeding Yolo Series in 2021 (2021)[J/OL].[2021-07-18]. https://arxiv.org/abs/2107.08430. |
[1] | XIE Wen,HUA Wenqiang,JIAO Licheng,WANG Ruonan. Review on polarimetric SAR terrain classification methods using deep learning [J]. Journal of Xidian University, 2023, 50(3): 151-170. |
[2] | ZHOU Shuo,ZHOU Yiqing,ZHANG Chong,XING Wang. ResNet enabled joint channel estimation and signal detection for OTFS [J]. Journal of Xidian University, 2023, 50(3): 19-30. |
[3] | WANG Keyan,CHENG Jicong,HUANG Shirui,CAI Kunlun,WANG Weiran,LI Yunsong. Low-light image dehazing network with aggregated context-aware attention [J]. Journal of Xidian University, 2023, 50(2): 23-32. |
[4] | ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, WEI Dongdong, HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[5] | LIU Xiaowen, GUO Jichang, ZHENG Sida. Weakly-supervised salient object detection with the multi-scale progressive network [J]. Journal of Xidian University, 2023, 50(1): 48-57. |
[6] | LIU Bochong, CAI Huaiyu, YANG Shiyuan, LI Haotian, WANG Yi, CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[7] | ZHANG Yali, LI Wenyuan, LI Changlu, DING Shaobo. Method for enhancement of the multi-scale low-light image by combining an attention guidance [J]. Journal of Xidian University, 2023, 50(1): 129-136. |
[8] | CUI Shaoguo,CHEN Siqi,DU Xing. Dual graph attention networks model for target sentiment analysis [J]. Journal of Xidian University, 2023, 50(1): 137-148. |
[9] | ZHANG Zehuan, LIU Qiang, GUO Difei. High efficient framework for large-scale zero-shot image recognition [J]. Journal of Xidian University, 2022, 49(6): 103-110. |
[10] | LI Jiaojiao, LIU Zhiqiang, SONG Rui, LI Yunsong. Algorithm for segmentation of remote sensing imagery using the improved Unet [J]. Journal of Xidian University, 2022, 49(6): 67-75. |
[11] | ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network [J]. Journal of Xidian University, 2022, 49(6): 76-85. |
[12] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[13] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[14] | QI Peihan,LI Bing,XIE Aiping,GAO Xianglan. Deep learning reconstruction algorithm for incomplete samples of frequency hopping communication signals [J]. Journal of Xidian University, 2022, 49(4): 1-7. |
[15] | MA Lun,LIU Xin,ZHAO Bin,WANG Ruiping,LIAO Guisheng,ZHANG Yajing. Impaired behavior recognition by using the multi-head-siamese neural network [J]. Journal of Xidian University, 2022, 49(4): 100-108. |
|