Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (6): 76-85.doi: 10.19665/j.issn1001-2400.2022.06.010
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
ZHANG Zhaoyu1(),TIAN Chunna1(),ZHOU Heng1(),TIAN Xilan2()
Received:
2021-10-27
Online:
2022-12-20
Published:
2023-02-09
CLC Number:
ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network[J].Journal of Xidian University, 2022, 49(6): 76-85.
"
算法 | 属性 | |||||||
---|---|---|---|---|---|---|---|---|
OCC | LSV | FM | LI | TC | SO | DEF | ALL | |
SiamFC[ | 70.2/55.9 | 78.7/63.5 | 72.7/60.4 | 61.5/50.7 | 74.7/59.5 | 72.4/55.2 | 53.8/45.0 | 65.5/54.0 |
SiamDW[ | 63.4/49.2 | 72.0/55.7 | 63.2/48.4 | 68.8/55.1 | 68.4/53.6 | 73.2/53.4 | 69.8/55.9 | 68.8/55.0 |
SiamDW[ | 67.5/53.6 | 68.9/56.5 | 71.1/57.6 | 70.0/58.8 | 63.5/51.7 | 76.4/58.8 | 69.1/58.2 | 68.0/56.5 |
MDNet[ | 82.9/64.1 | 77.0/57.3 | 80.5/59.8 | 79.5/64.3 | 79.5/60.9 | 87.0/62.2 | 81.6/68.8 | 80.0/63.7 |
MDNet[ | 77.2/58.3 | 81.7/59.4 | 78.2/56.0 | 82.8/64.7 | 79.9/59.7 | 87.9/61.9 | 83.2/68.9 | 81.2/63.3 |
CMR[ | 82.5/62.6 | 83.9/64.7 | 83.8/64.7 | 85.5/65.8 | 84.4/64.9 | 84.8/64.2 | 84.8/64.4 | 82.7/64.3 |
SGT[ | 81.0/56.7 | 84.2/54.7 | 79.9/55.9 | 88.4/65.1 | 84.8/61.5 | 91.7/61.8 | 91.9/73.3 | 85.1/62.8 |
LTDA[ | 84.6/63.5 | 84.8/64.4 | 84.8/64.2 | 85.1/66.3 | 85.3/66.0 | 86.7/66.3 | 86.9/67.6 | 84.3/67.7 |
DAPNet[ | 87.3/67.4 | 86.0/66.1 | 85.2/65.3 | 86.9/67.7 | 87.5/68.0 | 88.6/68.2 | 89.1/69.6 | 88.2/70.7 |
MaCNet[ | 87.6/68.7 | 84.6/67.3 | 82.3/65.9 | 89.4/73.1 | 89.2/69.7 | 95.0/69.5 | 92.6/76.5 | 88.0/71.4 |
文中算法 | 86.6/70.8 | 89.6/71.7 | 86.4/70.6 | 93.1/75.5 | 88.5/71.6 | 90.1/70.3 | 93.0/75.0 | 90.6/73.8 |
[1] | YOUS, ZHU H, LI M, et al. A Review of Visual Trackers and Analysis of Its Application to Mobile Robot[EB/OL].[2021-10-02].arXiv:1910.09761,2019. |
[2] | 成磊, 王玥, 田春娜. 一种添加残差注意力机制的视觉目标跟踪算法[J]. 西安电子科技大学学报, 2020, 47(6):148-157. |
CHENG Lei, WANG Yue, TIAN Chunna. Residual Attention Mechanism for Visual Tracking[J]. Journal of Xidian University, 2020, 47(6):148-157. | |
[3] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
doi: 10.1109/TPAMI.2014.2345390 pmid: 26353263 |
[4] | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-Convolutional Siamese Networks for Object Tracking[C]// Proceedings of European Conference on Computer Vision Workshops.Heidelberg:Springer, 2016:850-865. |
[5] | LI B, WU W, WANG Q, et al. SiamRPN++:Evolution of Siamese Visual Tracking with Very Deep Networks[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4282-4291. |
[6] | 易翔, 王炳健. 视觉显著性指导的红外与可见光图像融合算法[J]. 西安电子科技大学学报, 2019, 46(1):27-32. |
YI Xiang, WANG Bingjian. Fusion of Infrared and Visual Images Guided by Visual Saliency[J]. Journal of Xidian University, 2019, 46(1):27-32. | |
[7] |
ZHANG X, YE P, LEUNG H, et al. Object Fusion Tracking Based on Visible and Infrared Images:a Comprehensive Review[J]. Information Fusion, 2020, 63:166-187.
doi: 10.1016/j.inffus.2020.05.002 |
[8] | YUN X, JING Z, XIAO G, et al. A Compressive Tracking Based on Time-Space Kalman Fusion Model[J]. Science China-Information Sciences, 2016, 59(1):1-15. |
[9] |
XIAO G, YUN X, WU J. A New Tracking Approach for Visible and Infrared Sequences Based on Tracking-Before-Fusion[J]. International Journal of Dynamics and Control, 2016, 4(1):40-51.
doi: 10.1007/s40435-014-0115-4 |
[10] |
ZHAI S, SHAO P, LIANG X, et al. Fast RGB-T Tracking via Cross-Modal Correlation Filters[J]. Neurocomputing, 2019, 334:172-181.
doi: 10.1016/j.neucom.2019.01.022 |
[11] | YUN X, SUN Y, YANG X, et al. Discriminative Fusion Correlation Learning for Visible and Infrared Tracking[J]. Mathematical Problems in Engineering, 2019, 2019:1-11. |
[12] | 熊跃军, 张海涛, 邓黠. RGBT双模态加权相关滤波跟踪算法[J]. 信号处理, 2020, 36(9):1590-1597. |
XIONG Yuejun, ZHANG Haitao, DENG Xia. RGBT Dual-Modal Tracking with Weighted Discriminative Correlation Filters[J]. Journal of Singal Processing, 2020, 36(9):1590-1597. | |
[13] | 宋建锋, 苗启广, 王崇晓, 等. 注意力机制的多尺度单目标跟踪算法[J]. 西安电子科技大学学报, 2021, 48(5):110-116. |
SONG Jianfeng, MIAO Qiguang, WANG Chongxiao, et al. Multi-Scale Single Object Tracking Based on the Attention Mechanism[J]. Journal of Xidian University, 2021, 48(5):110-116. | |
[14] | XU N, XIAO G, ZHANG X, et al. Relative Object Tracking Agorithm Based on Convolutional Neural Network for Visible and Infrared Video Sequences[C/OL].[2021-10-03]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1c200e5061310vw04u680cb0y2513125&site. |
[15] | LI C, LU A, ZHENG A, et al. Multi-Adapter RGBT Tracking[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision Workshop.Piscataway:IEEE, 2019:2262-2270. |
[16] | ZHU Y, LI C, LUO B, et al. Dense Feature Aggregation and Pruning for RGBT Tracking[C]// ACM Multimedia Conference. New York: ACM, 2019:465-472. |
[17] | LU A, QIAN C, LI C, et al. Duality-Gated Mutual Condition Network for RGBT Tracking[EB/OL].[2021-09-28].arXiv:2011.07188,2020. |
[18] | NAM H, HAN B. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2016:4293-4302. |
[19] | CHEN Z, ZHONG B, LI G, et al. Siamese Box Adaptive Network for Visual Tracking[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020:6667-6676. |
[20] | ZHANG X, YE P, QIAO D, et al. Object Fusion Tracking Based on Visible and Infrared Images Using Fully Convolutional Siamese Networks[C/OL].[2021-09-30].Doi:10.23919/FUSION43075.2019.9011253. |
[21] | ZHANG X, YE P, PENG S, et al. DSiamMFT:An RGB-T Fusion Tracking Method via Dynamic Siamese Networks Using Multi-Layer Feature Fusion[J]. Signal Processing Image Communication, 2020, 84:115756. |
[22] | 申亚丽. 基于特征融合的RGBT双模态孪生跟踪网络[J]. 红外与激光工程, 2021, 50(3):20200459. |
SHEN Yali. RGBT Dual-Modal Siamese Tracking Network with Feature Fusion[J]. Infrared And Laser Engineering, 2021, 50(3):20200459. | |
[23] | HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2018:7132-7141. |
[24] |
LIU Q, LU X, HE Z, et al. Deep Convolutional Neural Networks for Thermal Infrared Object Tracking[J]. Knowledge-Based Systems, 2017, 134:189-198.
doi: 10.1016/j.knosys.2017.07.032 |
[25] |
LI X, LIU Q, FAN N, et al. Hierarchical Spatial-Aware Siamese Network for Thermal Infrared Object Tracking[J]. Knowledge-Based Systems, 2019, 166:71-81.
doi: 10.1016/j.knosys.2018.12.011 |
[26] | ZHU Z, WANG Q, LI B, et al. Distractor-Aware Siamese Networks for Visual Object Tracking[C/OL].[2021-10-04]. https://paperswithcode.com/paper/distractor-aware-siamese-networks-for-visual. |
[27] | DANELLJAN M, GOUTAM B G, KHAN F S, et al. ATOM:Accurate Tracking by Overlap Maximization[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4660-4669. |
[28] |
TROTTIER L, GIGUERE P, CHAIB-DRAA B. Parametric Exponential Linear Unit for Deep Convolutional Neural Networks[C/OL].[2021-10-10].DOI:10.48550/arXiv.1605.09332.
doi: 10.48550/arXiv.1605.09332 |
[29] | BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the Power of Deep Tracking[EB/OL].[2021-10-05].arXiv:1804.06833v1. |
[30] | LI C, LIANG X, LU Y, et al. RGB-T Object Tracking:Benchmark and Baseline[J]. Pattern Recognition, 2019, 96(12):106977. |
[31] |
LI C, CHENG H, HU S, et al. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking[J]. IEEE Transactions on Image Processing, 2016, 25(12):5743-5756.
doi: 10.1109/TIP.2016.2614135 pmid: 28114068 |
[32] |
ZHANG H, ZHANG L, ZHOU L, et al. Object Tracking in RGB-T Videos Using Modal-Aware Attention Network and Competitive Learning[J]. Sensors, 2020, 20(2):393.
doi: 10.3390/s20020393 |
[33] | YANG R, ZHU Y, WANG X, et al. Learning Target-Oriented Dual Attention for Robust RGB-T Tracking[C]// Proceedings of 2019 IEEE International Conference on Image Processing.Piscataway:IEEE, 2019:3975-3979. |
[34] | LI C, ZHAO N, LU Y, et al. Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking[C]// ACM International Conference on Multimedia. New York: ACM, 2017:1856-1864. |
[35] | LI C, ZHU C, HUANG Y, et al. Cross-Modal Ranking with Soft Cnsistency and Nisy Lbels for Rbust RGB-T Tacking[C/OL].[2021-10-06]. https://paperswithcode.com/paper/cross-modal-ranking-with-soft-consistency-and. |
[36] | ZHANG Z, PENG H. Deeper and Wder Samese Ntworks for Ral-time Vsual Tacking[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4591-4600. |
[1] | ZHANG Zehuan, LIU Qiang, GUO Difei. High efficient framework for large-scale zero-shot image recognition [J]. Journal of Xidian University, 2022, 49(6): 103-110. |
[2] | LI Jiaojiao, LIU Zhiqiang, SONG Rui, LI Yunsong. Algorithm for segmentation of remote sensing imagery using the improved Unet [J]. Journal of Xidian University, 2022, 49(6): 67-75. |
[3] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[4] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[5] | QI Peihan,LI Bing,XIE Aiping,GAO Xianglan. Deep learning reconstruction algorithm for incomplete samples of frequency hopping communication signals [J]. Journal of Xidian University, 2022, 49(4): 1-7. |
[6] | MA Lun,LIU Xin,ZHAO Bin,WANG Ruiping,LIAO Guisheng,ZHANG Yajing. Impaired behavior recognition by using the multi-head-siamese neural network [J]. Journal of Xidian University, 2022, 49(4): 100-108. |
[7] | JING Peiguang,LI Yaxin,SU Yuting. Micro-video multi-label classification method based on multi-modal feature encoding [J]. Journal of Xidian University, 2022, 49(4): 109-117. |
[8] | LIU Di,GUO Jichang,WANG Yudong,ZHANG Yi. Multi-scale salient object detection network combining an attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 118-126. |
[9] | GAO Deyong,KANG Zibing,WANG Song,WANG Yangping. Method to recognize human action by using the convolutional block attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 144-155. |
[10] | SHI Jiarong,LI Jinhong. Novel deep matrix factorization and its application in the recommendation system [J]. Journal of Xidian University, 2022, 49(3): 171-182. |
[11] | ZHANG Jing,ZHANG Xueying,CHEN Guijun,YAN Chao. EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism [J]. Journal of Xidian University, 2022, 49(3): 191-198. |
[12] | SUN Yamei,XIAO Song,QU Jiahui,DONG Wenqian. Algorithm for tracking adaptive context-aware correlation filter targets [J]. Journal of Xidian University, 2022, 49(3): 21-27. |
[13] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[14] | MA Sike,ZHAO Meng,SHI Fan,SUN Xuguo,CHEN Shengyong. Attention driven nuclei segmentation method for cell clusters [J]. Journal of Xidian University, 2022, 49(2): 198-206. |
[15] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
|