Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (6): 129-138.doi: 10.19665/j.issn1001-2400.2022.06.016
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
Received:
2022-01-18
Online:
2022-12-20
Published:
2023-02-09
CLC Number:
WU Kaijun, MEI Yuan. VAE-Fuse:an unsupervised multi-focus fusion model[J].Journal of Xidian University, 2022, 49(6): 129-138.
"
算法 | QMI | RMSSSIM | RPSNR | RSF | QAB/F | 参数量/KB |
---|---|---|---|---|---|---|
DWT | 0.735 9 | 0.975 7 | 26.086 1 | 19.273 2 | 0.403 4 | |
CNN | 1.093 5 | 0.979 7 | 26.350 2 | 19.000 7 | 0.462 6 | 154 6 |
DenseFuse(l2+ssim) | 0.788 9 | 0.958 2 | 28.238 7 | 11.480 5 | 0.335 8 | 293 |
SESF-Fuse | 1.111 5 | 0.977 5 | 26.205 9 | 19.281 9 | 0.463 9 | 304 |
U2Fusion | 0.704 5 | 0.968 4 | 24.488 1 | 15.456 1 | 0.369 5 | 257 0 |
文中算法 | 1.147 6 | 0.979 9 | 26.214 7 | 19.260 1 | 0.465 4 | 240 |
[1] |
BHAT S, KOUNDAL D. Multi-Focus Image Fusion Techniques:A Survey[J]. Artificial Intelligence Review, 2021, 54(8):5735-5787.
doi: 10.1007/s10462-021-09961-7 |
[2] | 申铉京, 张雪峰, 王玉, 等. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报(工学版), 2022, 52(8):1857-1864. |
SHEN Xuanjing, ZHANG Xuefeng, WANG Yu, et al. Pixel-Level Convolutional Neural Network Multi-Focus Image Fusion Algorithm[J]. Journal of Jilin University ( Engineering Edition), 2022, 52(8):1857-1864. | |
[3] | 杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127. |
YANG Xiaoli, LIN Suzhen. A Multi-Band Image Feature-Level Fusion Method with Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127. | |
[4] |
LIU Y, WANG L, CHENG J, et al. Multi-Focus Image Fusion:A Survey of the State of the Art[J]. Information Fusion, 2020, 64:71-91.
doi: 10.1016/j.inffus.2020.06.013 |
[5] |
LIU Y, CHEN X, PENG H, et al. Multi-Focus Image Fusion with a Deep Convolutional Neural Network[J]. Information Fusion, 2017, 36:191-207.
doi: 10.1016/j.inffus.2016.12.001 |
[6] | 陈清江, 汪泽百, 柴昱洲. 改进VGG网络的多聚焦图像的融合方法[J]. 应用光学, 2020, 41(3):500-507. |
CHEN Qingjiang, WANG Zebai, CHAI Yuzhou. Improved VGG Network Multi-Focus Image Fusion Method[J]. Application Optics, 2020, 41(3):500-507. | |
[7] | 陈清江, 李毅, 柴昱洲. 一种基于深度学习的多聚焦图像融合算法[J]. 激光与光电子学进展, 2018, 55(7):246-254. |
CHEN Qingjiang, LI Yi, CHAI Yuzhou. A Multifocus Image Fusion Algorithm Based on Deep Learning[J]. Progress in Laser and Optoelectronics, 2018, 55(7):246-254. | |
[8] | RAM P K, SAI V, VENKATESH B R. Deepfuse:A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:4714-4722. |
[9] |
MA B, YIN X, WU D, et al. End-To-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result[J]. Neurocomputing, 2022, 470:204-216.
doi: 10.1016/j.neucom.2021.10.115 |
[10] |
LI H, WU X J. DenseFuse:A Fusion Approach to Infrared and Visible Images[J]. IEEE Transactions on Image Processing, 2018, 28(5):2614-2623.
doi: 10.1109/TIP.2018.2887342 |
[11] |
HOU R, ZHOU D, NIE R, et al. VIF-Net:An Unsupervised Framework for Infrared and Visible Image Fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6:640-651.
doi: 10.1109/TCI.2020.2965304 |
[12] |
MA B, ZHU Y, YIN X, et al. SESF-Fuse:An Unsupervised Deep Model for Multi-Focus Image Fusion[J]. Neural Computing and Applications, 2021, 33(11):5793-5804.
doi: 10.1007/s00521-020-05358-9 |
[13] | XU H, MA J, LE Z, et al. Fusiondn:A Unified Densely Connected Network for Image Fusion[C]// Proceedings of the AAAI Conference on Artificial Intelligence. PaloAlto:AAAI, 2020:12484-12491. |
[14] |
XU H, MA J, JIANG J, et al. U2Fusion:A Unified Unsupervised Image Fusion Network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 44(1):502-518.
doi: 10.1109/TPAMI.2020.3012548 |
[15] | 高德勇, 康自兵, 王松, 等. 利用卷积块注意力机制识别人体动作的方法[J]. 西安电子科技大学学报, 2022, 49(4):144-155. |
GAO Deyong, KANG Zibing, WANG Song, et al. A Method for Recognizing Human Motion Using Convolution Block Attention Mechanism[J]. Journal of Xidian University, 2022, 49(4):144-155. | |
[16] | GE Z, LIU S, WANG F, et al. Yolox:Exceeding Yolo Series in 2021(2021)[J/OL].[2021-08-06]. https://arxic.ory/pdf/2017.08430.pdf. |
[17] |
ZHAO H, GALLO O, FROSIO I, et al. Loss Functions for Image Restoration with Neural Networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1):47-57.
doi: 10.1109/TCI.2016.2644865 |
[18] | 李郁峰, 陈念年, 张佳成. 一种快速高灵敏度聚焦评价函数[J]. 计算机应用研究, 2010, 27(4):1534-1536. |
LI Yufeng, CHEN Niannian, ZHANG Jiacheng. A Fast and High Sensitivity Focusing Evaluation Function[J]. Computer Application Research, 2010, 27(4):1534-1536. | |
[19] |
YANG Y, YANG M, HUANG S, et al. Robust Sparse Representation Combined with Adaptive PCNN for Multifocus Image Fusion[J]. IEEE Access, 2018, 6:20138-20151.
doi: 10.1109/ACCESS.2018.2822688 |
[20] | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale Structural Similarity for Image Quality Assessment[C]// The Thrity-Seventh Asilomar Conference on Signals,Systems & Computers 2003.Piscataway:IEEE, 2003:1398-1402. |
[21] |
SETIADI D R I M. PSNR vs SSIM:Imperceptibility Quality Assessment for image Steganography[J]. Multimedia Tools and Applications, 2021, 80(6):8423-8444.
doi: 10.1007/s11042-020-10035-z |
[22] |
杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7):1021-1035.
doi: 10.3778/j.issn.1673-9418.1710001 |
YANG Yanchun, LI Jiao, WANG Yangping. Review of Image Fusion Quality Evaluation Methods[J]. Computer Science and Exploration, 2018, 12(7):1021-1035.
doi: 10.3778/j.issn.1673-9418.1710001 |
|
[23] | LI X, ZHANG X, DING M. A Sum-Modified-Laplacian and Sparse Representation Based Multimodal Medical Image Fusion in Laplacian Pyramid Domain[J]. Medical & Biological Engineering & Computing, 2019, 57(10):2265-2275. |
[24] |
MA B, YIN X, WU D, et al. End-To-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result[J]. Neurocomputing, 2022, 470:204-216.
doi: 10.1016/j.neucom.2021.10.115 |
[25] |
MA X, HU S, LIU S, et al. Multi-Focus Image Fusion Based on Joint Sparse Representation and Optimum Theory[J]. Signal Processing:Image Communication, 2019, 78:125-134.
doi: 10.1016/j.image.2019.06.002 |
[26] | DESALE R P, VERMA S V. Study and Analysis of PCA,DCT & DWT Based Image Fusion Techniques[C]// 2013 International Conference on Signal Processing,Image Processing & Pattern Recognition.Piscataway:IEEE, 2013:66-69. |
[1] | YANG Jun,LI Jintai. Correspondence calculation of 3D shapes by mixed supervision learning [J]. Journal of Xidian University, 2022, 49(4): 201-212. |
[2] | TIAN Chunna,YE Yanyu,SHAN Xiao,DING Yuxuan,ZHANG Xiangnan. Survey of self-supervised video representation learning [J]. Journal of Xidian University, 2021, 48(5): 222-230. |
[3] | ZHANG Hongwei,TAN Quanlu,LU Shuai,GE Zhiqiang,XU Jian. Yarn-dyed shirt piece defect detection based on an unsupervised reconstruction model of the U-shaped denoising convolutional auto-encoder [J]. Journal of Xidian University, 2021, 48(3): 123-130. |
[4] | JIANG Shaobin,DU Chun,CHEN Hao,LI Jun,WU Jiangjiang. Unsupervised adversarial learning method for hard disk failure prediction [J]. Journal of Xidian University, 2020, 47(2): 118-125. |
[5] | ZHAO Yu;CAI Wandong. Multi-grain joint model of topic and sentiment for opinion mining [J]. J4, 2011, 38(3): 181-188. |
[6] |
WU Zhong-dong1;GAO Xin-bo1;XIE Wei-xin2.
A study of a new fuzzy clustering algorithm based on the kernel method [J]. J4, 2004, 31(4): 533-537. |
|