Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (3): 171-182.doi: 10.19665/j.issn1001-2400.2022.03.019
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
Received:
2021-03-08
Revised:
2021-12-01
Online:
2022-06-20
Published:
2022-07-04
CLC Number:
SHI Jiarong,LI Jinhong. Novel deep matrix factorization and its application in the recommendation system[J].Journal of Xidian University, 2022, 49(3): 171-182.
"
算法 | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) |
---|---|---|---|---|
MF | 1.094 4 | 0.897 2 | 1.089 5 | 0.892 3 |
PMF | 1.094 1 | 0.897 9 | 1.098 6 | 0.900 8 |
Bias-SVD | 0.959 8 | 0.769 2 | 0.964 8 | 0.772 6 |
SVD++ | 0.963 9 | 0.773 6 | 0.961 0 | 0.769 8 |
LMaFit | 0.118 7 | 0.068 7 | 2.057 6 | 1.595 5 |
MC-by-DMF | 0.266 9 | 0.169 3 | 1.590 5 | 1.202 2 |
DMF1 | 0.815 0 | 0.639 1 | 0.931 4 | 0.730 9 |
DMF2 | 0.831 3 | 0.651 3 | 0.896 6 | 0.703 1 |
LMaFit +DMF | 0.401 1 | 0.323 6 | 0.398 9 | 0.338 1 |
"
优化器 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) | Total time/s |
---|---|---|---|---|---|---|
Adadelta | 4 438.232 9 | 0.939 5 | 0.761 8 | 0.767 9 | 0.556 1 | 39.978 0 |
Adagrad | 4 259.258 8 | 0.920 3 | 0.737 8 | 0.750 8 | 0.539 3 | 38.829 1 |
Adam | 1 460.785 8 | 0.537 2 | 0.357 5 | 0.555 1 | 0.461 9 | 39.126 0 |
RMSProp | 1 455.512 5 | 0.537 3 | 0.358 6 | 0.553 5 | 0.462 1 | 39.069 3 |
"
优化器 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) | Total time/s |
---|---|---|---|---|---|---|
Adadelta | 15 053.592 3 | 0.773 3 | 0.657 2 | 0.863 4 | 0.765 1 | 375.934 8 |
Adagrad | 10 762.330 1 | 0.652 9 | 0.542 9 | 0.740 8 | 0.662 4 | 383.168 1 |
Adam | 4 177.764 9 | 0.405 8 | 0.383 7 | 0.413 3 | 0.394 8 | 388.597 8 |
RMSProp | 4 151.930 7 | 0.406 0 | 0.383 8 | 0.413 5 | 0.393 1 | 389.326 0 |
"
优化器 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) | Total time/s |
---|---|---|---|---|---|---|
Adadelta | 2 414.897 0 | 1.063 7 | 0.889 7 | 0.865 9 | 0.720 4 | 59.257 8 |
Adagrad | 1 855.704 3 | 0.926 7 | 0.733 5 | 0.735 9 | 0.582 4 | 57.587 4 |
Adam | 679.423 8 | 0.547 7 | 0.352 9 | 0.503 4 | 0.375 9 | 59.545 5 |
RMSProp | 658.356 8 | 0.548 0 | 0.356 4 | 0.499 9 | 0.376 5 | 58.288 2 |
"
误差 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) |
---|---|---|---|---|---|
K1=30,K2=30 | 2 192.029 5 | 0.661 0 | 0.410 2 | 0.567 8 | 0.411 6 |
K1=30,K2=50 | 2 198.657 5 | 0.660 9 | 0.409 8 | 0.567 8 | 0.411 4 |
K1=30,K2=100 | 2 214.651 9 | 0.660 9 | 0.410 0 | 0.568 0 | 0.411 6 |
K1=50,K2=30 | 1 488.368 2 | 0.543 7 | 0.365 2 | 0.497 1 | 0.387 7 |
K1=50,K2=50 | 1 493.476 9 | 0.543 4 | 0.364 7 | 0.497 0 | 0.387 6 |
K1=50,K2=100 | 1 510.461 1 | 0.543 1 | 0.364 6 | 0.496 9 | 0.387 6 |
K1=80,K2=30 | 1 455.386 7 | 0.537 3 | 0.358 0 | 0.555 1 | 0.462 0 |
K1=80,K2=50 | 1 460.785 8 | 0.527 2 | 0.357 5 | 0.555 1 | 0.461 9 |
K1=80,K2=100 | 1 485.411 5 | 0.536 9 | 0.357 2 | 0.555 1 | 0.461 9 |
"
误差 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) |
---|---|---|---|---|---|
K1=30,K2=30 | 4 244.512 2 | 0.411 8 | 0.394 2 | 0.430 4 | 0.417 5 |
K1=30,K2=50 | 4 253.303 5 | 0.411 8 | 0.394 2 | 0.430 4 | 0.417 6 |
K1=30,K2=100 | 4 275.875 0 | 0.411 8 | 0.394 1 | 0.430 2 | 0.417 7 |
K1=50,K2=30 | 4 629.877 2 | 0.430 1 | 0.415 6 | 0.450 8 | 0.440 3 |
K1=50,K2=50 | 4 638.375 5 | 0.430 0 | 0.415 6 | 0.451 0 | 0.440 4 |
K1=50,K2=100 | 4 665.692 1 | 0.430 0 | 0.415 5 | 0.450 8 | 0.440 2 |
K1=80,K2=30 | 4 134.036 6 | 0.406 0 | 0.383 9 | 0.413 5 | 0.394 9 |
K1=80,K2=50 | 4 145.002 7 | 0.405 9 | 0.383 9 | 0.413 6 | 0.395 0 |
K1=80,K2=100 | 4 177.764 9 | 0.405 8 | 0.383 7 | 0.413 3 | 0.394 8 |
"
误差 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) |
---|---|---|---|---|---|
K1=50,K2=30 | 43.295 0 | 0.195 4 | 0.130 6 | 0.525 5 | 0.443 8 |
K1=50,K2=50 | 47.092 1 | 0.195 3 | 0.130 5 | 0.525 5 | 0.443 8 |
K1=50,K2=100 | 60.205 8 | 0.195 3 | 0.130 5 | 0.525 5 | 0.443 8 |
K1=100,K2=30 | 36.899 4 | 0.166 8 | 0.098 5 | 0.571 6 | 0.475 9 |
K1=100,K2=50 | 39.151 1 | 0.157 2 | 0.096 4 | 0.571 8 | 0.476 0 |
K1=100,K2=100 | 55.598 8 | 0.157 2 | 0.096 4 | 0.571 7 | 0.476 0 |
K1=300,K2=30 | 27.520 6 | 0.096 6 | 0.051 5 | 0.660 8 | 0.521 1 |
K1=300,K2=50 | 38.436 9 | 0.096 4 | 0.051 4 | 0.660 9 | 0.521 2 |
K1=300,K2=100 | 74.406 8 | 0.096 4 | 0.051 3 | 0.660 8 | 0.521 2 |
"
误差 | Loss | RMSE(Train) | MAE(Train) | RMSE(Test) | MAE(Test) |
---|---|---|---|---|---|
K1=100,K2=30 | 3 421.744 1 | 1.291 7 | 1.036 2 | 0.919 8 | 0.808 5 |
K1=100,K2=50 | 3 415.197 5 | 1.288 3 | 1.032 7 | 0.920 6 | 0.809 2 |
K1=100,K2=100 | 3 443.585 2 | 1.287 3 | 1.030 6 | 0.919 3 | 0.807 6 |
K1=300,K2=30 | 818.631 3 | 0.619 5 | 0.350 8 | 0.546 9 | 0.369 9 |
K1=300,K2=50 | 828.196 0 | 0.616 5 | 0.349 1 | 0.548 6 | 0.370 3 |
K1=300,K2=100 | 879.735 0 | 0.616 3 | 0.348 8 | 0.549 0 | 0.370 4 |
K1=500,K2=30 | 661.818 4 | 0.548 5 | 0.353 8 | 0.503 4 | 0.375 9 |
K1=500,K2=50 | 679.423 8 | 0.547 7 | 0.352 9 | 0.503 4 | 0.375 9 |
K1=500,K2=100 | 754.771 4 | 0.547 5 | 0.352 3 | 0.503 4 | 0.375 9 |
[1] |
HANANI U, SHAPIRA B, SHOVAL P. Information Filtering:Overview of Issues,Research and Systems[J]. User Modeling and User-Adapted Interaction, 2001, 11(3):203-259.
doi: 10.1023/A:1011196000674 |
[2] | GUPTA S, DAVE M. An Overview of Recommendation System:Methods and Techniques (Advances in Computing and Intelligent Systems)[M]. Heidelberg:Springer, 2020:231-237. |
[3] |
CUI Z, XU X, XUE F, et al. Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios[J]. IEEE Transactions on Services Computing, 2020, 13(4):685-695.
doi: 10.1109/TSC.2020.2964552 |
[4] |
HAN Y, HAN Z, WU J, et al. Artificial Intelligence Recommendation System of Cancer Rehabilitation Scheme Based on IoT Technology[J]. IEEE Access, 2020, 8:44924-44935.
doi: 10.1109/ACCESS.2020.2978078 |
[5] | THANGAVEL S K, BKARATKI P D, SANKAR A. Student Placement Analyzer:A Recommendation System Using Machine Learning[C]// International Conference on Advanced Computing and Communication Systems (ICACCS).Piscataway:IEEE, 2017:1-5. |
[6] | WATT J, BORHANI R, KATSAGGELOS A. Machine Learning Refined:Foundations,Algorithms,and Applications[M]. Cambridge:Cambridge University Press, 2020:1-301. |
[7] | YIN H, WANG Q, ZHENG K, et al. Overcoming Data Sparsity in Group Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020 (Early Access):1-12. |
[8] | FLETCHER K K. A Method for Dealing with Data Sparsity and Cold-Start Limitations in Service Recommendation Using Personalized Preferences[C]// IEEE International Conference on Cognitive Computing (ICCC).Piscataway:IEEE, 2017:72-79. |
[9] | PEAKE G, WANG J. Explanation Mining:Post Hoc Interpretability of Latent Factor Models for Recommendation Systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018:2060-2069. |
[10] |
LIN J, PU H, LI Y, et al. Intelligent Recommendation System for Course Selection in Smart Education[J]. Procedia Computer Science, 2018, 129:449-453.
doi: 10.1016/j.procs.2018.03.023 |
[11] | GOLDBERG D, NICHOLS D, OKI B M, et al. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. |
[12] | WANG X, HE X, CHUA T S. Learning and Reasoning on Graph for Recommendation[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020:890-893. |
[13] | BENNETT J, LANNING S. The Netflix Prize[C]// Proceedings of KDD cup and Workshop. New York: ACM, 2007:3-6. |
[14] | KOREN Y, BELL R, VOLINSKY C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8):30-37. |
[15] | 史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9):2103-2119. |
SHI Jiarong, WANG Dan, SHANG Fanhua, et al. Research Advances on Stochastic Gradient Descent Algorithms[J]. Acta Automatica Sinica, 2021, 47(9):2103-2119. | |
[16] | 焦李成, 赵进, 杨淑媛, 等. 深度学习、优化与识别[M]. 北京: 清华大学出版社, 2017. |
[17] | 汪梓艺, 苏育挺, 刘艳艳, 等. 一种改进DeeplabV3网络的烟雾分割算法[J]. 西安电子科技大学学报, 2019, 46(6):52-59. |
WANG Ziyi, SU Yuting, LIU Yanyan, et al. Algorithm for Segmentation of Smoke Using the Improved DeeplabV3 Network[J]. Journal of Xidian University, 2019, 46(6):52-59. | |
[18] | HE X, LIAO L, ZHANG H, et al. Neural Collaborative Filtering[C]// Proceedings of the 26th international Conference on World Wide Web. New York: ACM, 2017:173-182. |
[19] | XUE H J, DAI X, ZHANG J, et al. Deep Matrix Factorization Models for Recommender Systems[C]// International Joint Conference on Artificial Intelligence.California:IJCAI, 2017:3203-3209. |
[20] |
YI B, SHEN X, LIU H, et al. Deep Matrix Factorization with Implicit Embedding for Recommendation Systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8):4591-4601.
doi: 10.1109/TII.2019.2893714 |
[21] |
FAN J, CHENG J. Matrix Completion by Deep Matrix Factorization[J]. Neural Networks, 2018, 98:34-41.
doi: 10.1016/j.neunet.2017.10.007 |
[22] |
CANDÈS E J, TAO T. The Power of Convex Relaxation:Near-Optimal Matrix Completion[J]. IEEE Transactions on Information Theory, 2010, 56(5):2053-2080.
doi: 10.1109/TIT.2010.2044061 |
[23] |
WEN Z, YIN W, ZHANG Y. Solving a Low-Rank Factorization Model for Matrix Completion by a Nonlinear Successive Over-Relaxation Algorithm[J]. Mathematical Programming Computation, 2012, 4:333-361.
doi: 10.1007/s12532-012-0044-1 |
[24] | KAMISHIMA T. Nantonac Collaborative Filtering:Recommendation Based on Order Responses[C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003:583-588. |
[1] | ZHANG Jing,ZHANG Xueying,CHEN Guijun,YAN Chao. EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism [J]. Journal of Xidian University, 2022, 49(3): 191-198. |
[2] | JIANG Fang,HUANG Xing,HU Mengyu,WANG Yi,XU Yaohua,HU Yanjun. Denoising autoencoder-aided downlink MIMO-SCMA codec method [J]. Journal of Xidian University, 2022, 49(3): 74-82. |
[3] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[4] | ZHANG Yan,WANG Xiangyu,ZHANG Zhongwei,SUN Yemei,LIU Shudong. Boundary-aware network for building extraction from remote sensing images [J]. Journal of Xidian University, 2022, 49(1): 236-244. |
[5] | WANG Yong,WANG Xiyuan,REN Zeyang. Algorithm for gradient optimization of hybrid precoding based on DNN in the millimeter wave MIMO system [J]. Journal of Xidian University, 2022, 49(1): 202-207. |
[6] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[7] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[8] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[9] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[10] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[11] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[12] | ZHANG Shuwei,LI Junmin. Human body detection algorithm in complex monitoring scenes [J]. Journal of Xidian University, 2021, 48(5): 68-77. |
[13] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[14] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[15] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
|