[1] |
XU W, WANG B, LIU J, et al. Toward Practical Privacy-Preserving Linear Regression[J]. Information Sciences, 2022, 596:119-136.
doi: 10.1016/j.ins.2022.03.023
|
[2] |
CHEN Y, HUANG R, YANG B. Efficient Batch Fully Homomorphic Encryption with a Shorter Key from Ring-LWE[J]. Applied Sciences, 2022, 12(17):8420.
doi: 10.3390/app12178420
|
[3] |
AHARONI E, DRUCKER N, EZOV G, et al. Complex Encoded Tile Tensors:Accelerating Encrypted Analytics[J]. IEEE Security & Privacy, 2022, 20(5):35-43.
|
[4] |
DENG W, PENG Y, YANG F, et al. Feature Optimization and Hybrid Classification for Malicious Web Page Detection[J]. Concurrency and Computation:Practice and Experience, 2022, 34(16):e5859.
doi: 10.1002/cpe.v34.16
|
[5] |
SINHA S, SAHA S, ALAM M, et al. Exploring Bitslicing Architectures for Enabling FHE-Assisted Machine Learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11):4004-4015.
doi: 10.1109/TCAD.2022.3204909
|
[6] |
JANG J, LEE Y, KIM A, et al. Privacy-Preserving Deep Sequential Model with Matrix Homomorphic Encryption[C]//Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2022:377-391.
|
[7] |
YAN J, CAO J. Privacy Preservation of Optimization Algorithm over Unbalanced Directed Graph[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4):2164-2173.
doi: 10.1109/TNSE.2022.3155481
|
[8] |
JIA H, ALDEEN M S, ZHAO C, et al. Flexible Privacy-Preserving Machine Learning:When Searchable Encryption Meets Homomorphic Encryption[J]. International Journal of Intelligent Systems, 2022, 37(11):9173-9191.
doi: 10.1002/int.v37.11
|
[9] |
FU F, LIU S, CHENG Y. Vertical Federated Logistic Regression via Homomorphic Encryption and Secret Sharing[J]. Information and Communications Technology and Policy, 2022, 48(5):34-44.
|
[10] |
ZHAO J, ZHU H, WANG F, et al. ACCEL:An Efficient and Privacy-Preserving Federated Logistic Regression Scheme over Vertically Partitioned Data[J]. Science China Information Sciences, 2022, 65(7):1-2.
|
[11] |
EDEMACU K, KIM J W. Multi-Party Privacy-Preserving Logistic Regression with Poor Quality Data Filtering for IoT Contributors[J]. Electronics, 2021, 10(17):2049.
doi: 10.3390/electronics10172049
|
[12] |
YANG S, HUANG X. Universal Product Learning with Errors:A New Variant of LWE for Lattice-based Cryptography[J]. Theoretical Computer Science, 2022, 915:90-100.
doi: 10.1016/j.tcs.2022.02.032
|
[13] |
SONG D, VOLD A, MADAN K, et al. Multi-Label Legal Document Classification:A Deep Learning-Based Approach with Label-Attention and Domain-Specific Pre-Training[J]. Information Systems, 2022, 106:101718.
doi: 10.1016/j.is.2021.101718
|
[14] |
NGUYEN T, KARUNANAYAKE N, WANG S, et al. Privacy-Preserving Spam Filtering Using Homomorphic and Functional Encryption[J]. Computer Communications, 2023, 197:230-241.
doi: 10.1016/j.comcom.2022.11.002
|
[15] |
WIESE M, BOCHE H. Mosaics of Combinatorial Designs for Information-Theoretic Security[J]. Designs,Codes and Cryptography, 2022, 90(3):593-632.
doi: 10.1007/s10623-021-00994-1
|