[1] |
KAVIS M J. 让云落地:云计算服务模式(SaaS、PaaS和IaaS)设计决策[M]. 陈志伟,译. 北京: 电子工业出版社, 2016.
|
[2] |
SMANCHAT S, VIRIYAPANT K . Taxonomies of Workflow Scheduling Problem and Techniques in the Cloud[J]. Future Generation Computer Systems, 2015,52:1-12.
doi: 10.1016/j.future.2015.04.019
|
[3] |
ATKINSON M, GESING S, MONTAGNAT J , et al. Scientific Workflows: Past, Present and Future[J]. Future Generation Computer Systems, 2017,75:216-227.
doi: 10.1016/j.future.2017.05.041
|
[4] |
DEB K, SINDHYA K, HAKANEN J. Multi-objective Optimization, in Decision Sciences: Theory and Practice[M]. Boca Raton: CRC Press, 2016: 145-184.
|
[5] |
TOPCUOGLU H, HARIRI S, WU M . Performance-effective and Low-complexity Task Scheduling for Hetero-geneous Computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002,13(3):260-274.
doi: 10.1109/71.993206
|
[6] |
SIH G C, LEE E A . A Compile-time Scheduling Heuristic for Interconnection-constrained Heterogeneous Processor Architectures[J]. IEEE Transactions on Parallel and Distributed Systems, 1993,4(2):175-187.
doi: 10.1109/71.207593
|
[7] |
KWOK Y K, AHMAD I . Dynamic Critical-path Scheduling: an Effective Technique for Allocating Task Graphs to Multiprocessors[J]. IEEE Transactions on Parallel and Distributed Systems, 1996,7(5):506-521.
doi: 10.1109/71.503776
|
[8] |
ARABNEJAD H, BARBOSA J G . List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table[J]. IEEE Transactions on Parallel and Distributed Systems, 2014,25(3):682-694.
doi: 10.1109/TPDS.2013.57
|
[9] |
LEE Y C, HAN H, ZOMAYA A Y , et al. Resource-efficient Workflow Scheduling in Clouds[J]. Knowledge-Based Systems, 2015,80:153-162.
doi: 10.1016/j.knosys.2015.02.012
|
[10] |
DUAN R, PRODAN R, LI X . Multi-objective Game Theoretic Scheduling of Bag-of-tasks Workflows on Hybrid Clouds[J]. IEEE Transactions on Cloud Computing, 2014,2(1):29-42.
doi: 10.1109/TCC.2014.2303077
|
[11] |
YE X, LIU S H, YIN Y L , et al. User-oriented Many-objective Cloud Workflow Scheduling Based on an Improved Knee Point Driven Evolutionary Algorithm[J]. Knowledge-Based Systems, 2017,137:113-124.
|
[12] |
LI L M, WANG Y L, TRAUTMANN H , et al. Multiobjective Evolutionary Algorithms Based on Target Region Preferences[J]. Swarm and Evolutionary Computation, 2018,40:196-215.
doi: 10.1016/j.swevo.2018.02.006
|
[13] |
DEB K, AGRAWAL S, PRATAP A , et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
doi: 10.1109/4235.996017
|
[14] |
DENYSIUK R, GASPAR-CUNHA A . Multiobjective Evolutionary Algorithm Based on Vector Angle Neighborhood[J]. Swarm and Evolutionary Computation, 2017,37:45-57.
doi: 10.1016/j.swevo.2017.05.005
|
[15] |
BEUME N, NAUJOKS B, EMMERICH M . SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume[J]. European Journal of Operational Research, 2007,181:1653-1669.
doi: 10.1016/j.ejor.2006.08.008
|
[16] |
ZAPOTECAS-MARTíNEZ S, LóPEZ-JAIMES A, GARCíA-NáJERA A . LIBEA: a Lebesgue Indicator-based Evolutionary Algorithm for Multi-objective Optimization[J/OL].[2018-05-16]. DOI: 10.1016/j.swevo.2018.05.004.
|
[17] |
ZHANG Q F, LI H . MOEA/D: a Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731.
doi: 10.1109/TEVC.2007.892759
|
[18] |
TRIVEDI A, SRINIVASAN D, SANYAL K , et al. A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2017,21(3):440-462.
doi: 10.1109/TEVC.2016.2608507
|
[19] |
BHARATHI S, CHERVENAK A, DEELMAN E, et al. Characterization of Scientific Workflows [C]//Proceedings of the Third Workshop on 2008 Workflows in Support of Large-scale Science. Piscataway: IEEE, 2008: 1-10.
|
[20] |
ZITZLER E, THIELE L . Multiobjective Evolutionary Algorithms: a Comparative Case Study and the Strength Pareto Approach[J]. IEEE Transactions on Evolutionary Computation, 1999,3(4):257-271.
doi: 10.1109/4235.797969
|