西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (1): 130-136.doi: 10.19665/j.issn1001-2400.2019.01.021

• • 上一篇    下一篇

改进多目标进化算法的云工作流调度

王燕1,2   

  1. 1. 西安邮电大学 计算机学院,陕西 西安710121
    2. 西安邮电大学 陕西省网络数据分析与智能处理重点实验室,陕西 西安710121
  • 收稿日期:2018-06-14 出版日期:2019-02-20 发布日期:2019-03-05
  • 作者简介:王 燕(1977-),女,讲师,硕士, E-mail: wangyan15@xupt.edu.cn.
  • 基金资助:
    国家自然科学基金(61572399);陕西省工业攻关项目(2017GY-076)

Enhanced multi-objective evolutionary algorithm for workflow scheduling on the cloud platform

WANG Yan1,2   

  1. 1. School of Computer Science and Technology, Xi’an Univ. of Posts and Telecommunications, Xi’an 710121, China;
    2. Shaanxi Key Lab. of Network Data Analysis and Intelligent Processing, Xi’an Univ. Of Posts and Telecommunications, Xi’an 710121, China;
  • Received:2018-06-14 Online:2019-02-20 Published:2019-03-05

摘要:

针对云计算和云存储资源复杂变化的定价机制给云工作流调度带来了极大的挑战问题,建立了考虑定价机制的多目标云工作流调度模型。针对云工作流调度问题的特点,设计了一种实数编码机制,使得现有的基于实数编码的交叉算子能够直接用于求解云工作流调度问题,从而避免了现有组合优化方法需要进行解的可行性修正的问题。进一步在MOEA/D算法框架下,设计了一种启发式局部搜索策略,提出了一种新的进化多目标云工作流调度算法。仿真试验结果表明,与目前主流的进化多目标优化算法相比,该算法在求得帕累托最优解集的宽广性和均匀性上具有明显的优势,且算法稳定性更好。该方法对于云平台资源利用率的提升具有重要的应用价值。

关键词: 工作流调度, 云计算, 进化多目标优化算法, 局部搜索

Abstract:

The complex and dynamic pricing mechanism raises big challenges to the workflow scheduling on the cloud platform. Considering the prices of the virtualized computing and storage resources, a multi-objective optimization model is developed for the workflow running on a cloud platform. Based on the character of the target problem, a real-coding mechanism is developed for the workflow scheduling problem, so that the crossover operators in a real-coded evolutionary based optimizer can be conveniently employed and the solution repairing step in combinatorial optimization algorithms can be skipped. Following the algorithm framework of the MOEA/D, a local search strategy is designed, and a new multi-objective workflow scheduling algorithm is proposed. Experimental studies have illustrated that the proposed algorithm can obtain Pareto optimal solution sets with better coverage and uniformity than the compared algorithms, which will contribute to improving the utilization of the resources on the cloud platform.

Key words: workflow scheduling, cloud computing, evolutionary multi-objective optimization algorithm, local search

中图分类号: 

  • TP301.6