[1] |
WANG C, CHEN Z G, SHANG K, et al. Label-removed Generative Adversarial Networks Incorporating with K-Means[J]. Neurocomputing, 2019,361:126-136.
doi: 10.1016/j.neucom.2019.06.041
|
[2] |
刘景美, 韩庆庆, 沈志威, 等. 采用k均值聚类的物理层密钥生成方案[J]. 西安电子科技大学学报, 2019,46(1):8-13.
|
|
LIU Jingmei, HAN Qingqing, SHEN Zhiwei, et al. Method for Secret Key Generation Using k-menas Clustering[J]. Journal of Xidian University, 2019,46(1):8-13.
|
[3] |
REZA M N, NA I S, BAEK S W, et al. Rice Yield EstimationBased on k-means Clustering with Graph-cut Segmentation using Low-altitude UAV Image[J]. Biosystems Engineering, 2019,177:109-121.
doi: 10.1016/j.biosystemseng.2018.09.014
|
[4] |
刘永利, 郭呈怡, 刘静, 等. 结合FCS的多视图模糊聚类算法[J]. 西安电子科技大学学报, 2019,46(4):99-106.
|
|
LIU Yongli, GUO Chengyi, LIU Jing, et al. Multi-view Fuzzy Clustering Algorithm Using FCS[J]. Journal of Xidian University, 2019,46(4):99-106.
|
[5] |
CAPO M, PEREZ A, LOZANO J A. An Efficient Approximation to the k-means Clustering for Massive Data[J]. Knowledge-Based Systems, 2017,117:56-69.
doi: 10.1016/j.knosys.2016.06.031
|
[6] |
DENG T T, CROOKES D, SIDDIQUI F, et al. A New Real-time FPGA-based Implementation of k-means Clustering for Image [C]//Communications in Computer and Information Science: 924(2). Heidelberg: Springer Verlag, 2018: 468-477.
|
[7] |
AMATO F, BARBARESCHI M, COZZOLINO G, et al. Outperforming Image Segmentation by Exploiting Approximate k-means Algorithm [C]//Springer Proceedings in Mathematics and Statistics: 217. New York: Springer New York LLC, 2017: 31-38.
|
[8] |
HU J J, LI Z J, YANG M, et al. A High-accuracy Approximate Adder with Correct Sign Calculation[J]. Integration, 2019,65:370-388.
doi: 10.1016/j.vlsi.2017.09.003
|
[9] |
JAVED R H, SIDDIQUE A, HAFIZ R, et al. ApproxCT:Approximate Clustering Techniques for Energy Efficient Computer Vision in Cyber-physical Systems [C]//Proceedings of the 2018 International Conference on Open Source Systems and Technologies. Piscataway: IEEE, 2018: 64-70.
|
[10] |
HUANGP H, WANG C H, MA R Z, et al. A Hardware/Software Co-design Method for Approximate Semi-supervised k-means Clustering [C]//Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI. Washington: IEEE Computer Society, 2018: 575-580.
|
[11] |
SAEGUSA T, MARUYAMA T. An FPGA Implementation of k-means Clustering for Color Images Based on Kd-tree [C]//Proceedings of the 2006 International Conference on Field Programmable Logic and Applications. Washington: IEEE Computer Society, 2006: 567-572.
|
[12] |
TIAN Y, ZHANG Q, WANG T, et al. ApproxMA: Approximate Memory Access for Dynamic Precision Scaling [C]//Proceedings of the 2015 ACM Great Lakes Symposium on VLSI. New York: ACM, 2015: 337-342.
|
[13] |
FADAEI A, KHASTEH S H. Enhanced k-means Re-clustering over Dynamic Network[J]. Expert Systems with Application, 2019,132:126-140.
doi: 10.1016/j.eswa.2019.04.061
|
[14] |
YU S S, CHU S W, WANG C M, et al. Two Improved k-means Algorithm[J]. Applied Soft Computing Journal, 2018,68:747-755.
doi: 10.1016/j.asoc.2017.08.032
|
[15] |
ZHANG G, ZHANG C C, ZHANG H Y. Improved k-means Algorithm Based on Density Canopy[J]. Knowledge-Based Systems, 2018,145:289-297.
doi: 10.1016/j.knosys.2018.01.031
|
[16] |
CHIPPA V K, MOHAPATRA D, ROY K, et al. Scalable Effort Hardware Design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014,22(9):2004-2016.
doi: 10.1109/TVLSI.2013.2276759
|
[17] |
ZHANG Q, XU Q. ApproxIt: a Quality Management Framework of Approximate Computing for Iterative Methods[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017,148(11):1-13.
|
[18] |
CHIPPA V K, ROY K, CHAKRADHAR S T, et al. Managing the Quality vs. Efficiency Trade-off Using Dynamic Effort Scaling[J]. Transactions on Embedded Computing Systems, 2013,12(2):90.
|