[1] |
BLAHUT R E. Transform Techniques for Error Control Codes[J]. IBM Journal of Research and Development, 1979, 23(3): 299-315.
doi: 10.1147/rd.233.0299
|
[2] |
BLAHUT R E. Algebraic Codes for Data Transmission[M]. Cambridge: Cambridge University Press, 2003.
|
[3] |
TANNER R M. Spectral Graphs for Quasi-cyclic LDPC Codes[C]// Proceedings of the 2001IEEE International Symposium on Information Theory. Piscataway: IEEE, 2001: 226.
|
[4] |
ZHANG L, HUANG Q, LIN S, et al. Quasi-cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares[J]. IEEE Transactions on Communications, 2010, 58(11): 3126-3139.
doi: 10.1109/TCOMM.2010.091710.090721
|
[5] |
ZHANG L, HUANG Q, LIN S, et al. Quasi-Cyclic LDPC Codes on Latin Squares and the Ranks of Their Parity-check Matrices[C]// Proceedings of the 2010 Information Theory and Applications Workshop. Washington: IEEE Computer Society, 2010: 16-22.
|
[6] |
TANG L, HUANG Q, WANG Z, et al. Low-complexity Encoding of Binary Quasi-cyclic Codes Based on Galois Fourier Transform[C]// Proceedings of the 2013 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2013: 131-135.
|
[7] |
HUANG Q, TANG L, HE S, et al. Low-complexity Encoding of Quasi-cyclic Codes Based on Galois Fourier Transform[J]. IEEE Transactions on Communications, 2014, 62(6): 1757-1767.
doi: 10.1109/TCOMM.2014.2316174
|
[8] |
LIN S J, CHUNG W H, HAN Y S. Novel Polynomial Basis and Its Application to Reed-solomon Erasure Codes[C]// Proceedings of the 2014 Annual IEEE Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 2014: 316-325.
|
[9] |
LIN S J, AL-NAFFOURI T Y, HAN Y S, et al. Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes[J]. IEEE Transactions on Information Theory, 2016, 62(11): 6284-6299.
doi: 10.1109/TIT.2016.2608892
|
[10] |
LI R, HUANG Q, WANG Z. Encoding of Non-binary Quasi-cyclic Codes by Lin-Chung-Han Transform[C]// Proceedings of the 2018 IEEE Information Theory Workshop. Piscataway: IEEE, 2018: 8613313.
|
[11] |
BAREISS E H. Numerical Solution of Linear Equations with Toeplitz and Vector Toeplitz Matrices[J]. Numerische Mathematik, 1969, 13(5): 404-424.
doi: 10.1007/BF02163269
|
[12] |
DIAO Q, HUANG Q, LIN S, et al. A Transform Approach for Computing the Ranks of Parity-check Matrices of Quasi-cyclic LDPC Codes[C]// Proceedings of the 2011 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2011: 366-370.
|
[13] |
DIAO Q, HUANG Q, LIN S, et al. A Matrix-theoretic Approach for Analyzing Quasi-cyclic Low-density Parity-check Codes[J]. IEEE Transactions on Information Theory, 2012, 58(6): 4030-4048.
doi: 10.1109/TIT.2012.2184834
|
[14] |
DIAO Q, HUANG Q, LIN S, et al. A Transform Approach for Analyzing and Constructing Quasi-cyclic Low-density Parity-check Codes[C]// Proceedings of the 2011 Information Theory and Applications Workshop. Washington: IEEE Computer Society, 2011: 15-22.
|
[15] |
WU X, WANG Y, YAN Z. On Algorithms and Complexities of Cyclotomic Fast Fourier Transforms Over Arbitrary Finite Fields[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1149-1158.
doi: 10.1109/TSP.2011.2178844
|