Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (1): 22-38.doi: 10.19665/j.issn1001-2400.2021.01.004
Previous Articles Next Articles
ZHENG Xianchun(),LI Hui(),WANG Rui(),YAN Haonan(),DAI Rui(),XIAO Mingchi()
Received:
2020-08-11
Online:
2021-02-20
Published:
2021-02-03
CLC Number:
ZHENG Xianchun,LI Hui,WANG Rui,YAN Haonan,DAI Rui,XIAO Mingchi. Survey of anonymous network applications and simulation platforms[J].Journal of Xidian University, 2021, 48(1): 22-38.
"
研究方向 | 攻击方式 | 防御方案 |
---|---|---|
链路攻击 | 网络审查[ BGP攻击[ | 审查避免[ |
路径选择算法[ | ||
路径选择攻击[ | ||
增强稳定性和安全性 | ||
网桥攻击[ | ||
流量分析 | 网桥发现攻击[ | |
重放攻击[ | 数据挖掘、可信机制 | |
中间人攻击[ | ||
流量关联攻击[ | 利用网络测量执行路径预测、智能中继选择[ | |
网站指纹攻击 | 基于网站特征[ | 修改浏览器以半双工模式工作[ |
基于网站缓存[ | 缓存屏蔽技术 | |
侧信道攻击[ | ||
其他攻击 | 拒绝服务攻击[ | 隐私信息保护、负载测量与均衡技术 |
信息泄露[ |
"
实验途径 | 典型应用代表 | 优 点 | 缺 点 |
---|---|---|---|
真实网络中实验 | 真实的Tor网络 | 小规模实验的门槛较低,真实度高 | 整体不可控,大规模实验的成本高,危害影响范围广 |
大型网络测试床 | PlanetLab[ | 根据实验需要申请资源,拥有一定程度上的全局视角 | 损失了部分真实度,时间范围和规模有限 |
模拟实验 | ExperamenTor[ | 全局控制度较高,实验部署成本较低 | 不再更新,目前没有可使用的版本 |
仿真试验 | TorPs[ | 仅适用于提高或者改变链路选择算法的相关实验 | 无法满足流量分析、安全性测试等实验的要求 |
半仿真半模拟 | Shadow[ | 接管了底层并实现了一个复杂的实验网络,全局性和真实性较高 | 改造成本较高,且改造效果直接影响实验效率和结果 |
[1] | WEBER J, KRUISBERGEN E W. Criminal Markets:the Dark Web,Money Laundering and Counterstrategies-an Overview of the 10th Research Conference on Organized Crime[J]. Trends in Organized Crime, 2019,22(3):346-356. |
[2] | GEHL R W. Weaving the Dark Web:Legitimacy on Freenet,Tor,and I2P[M]. Cambridge: MIT Press, 2018. |
[3] | 于世梁. 国外打击涉“暗网”犯罪的经验及启示[J]. 河南警察学院学报, 2019,28(4):5-11. |
YU Shiliang. Lessons of Policing the Dark Web for China[J]. Journal of Henan Police College, 2019,28(4):5-11. | |
[4] | 明乐齐. 暗网犯罪的趋势分析与治理对策[J]. 犯罪研究, 2019,( 4):65-76. |
MING Leqi. Trend Analysis and Countermeasures of Covert Network Crime[J]. Chinese Criminology Review, 2019,( 4):65-76. | |
[5] | 吕博, 廖勇, 谢海永. Tor 匿名网络攻击技术综述[J]. 中国电子科学研究院学报, 2017,12(1):14-19. |
LU Bo, LIAO Yong, Xie Haiyong. Survey on Attack Technologies to Tor Anonymous Network[J]. Journal of CAEIT, 2017,12(1):14-19. | |
[6] | 刘鑫, 王能. 匿名通信综述[J]. 计算机应用, 2010,30(3):719-722. |
LIU Xin, WANG Neng. Survey of Anonymity Communication[J]. Journal of Computer Applications, 2010,30(3):719-722. | |
[7] | 罗军舟, 杨明, 凌振, 等. 匿名通信与暗网研究综述[J]. 计算机研究与发展, 2019,56(1):103-130. |
LUO Junzhou, YANG Ming, LING Zhen, et al. Anonymous Communication and Darknet:a Survey[J]. Journal of Computer Research and Development, 2019,56(1):103-130. | |
[8] | FINKLEA K. Dark Web:CRS Report R 44101[R/OL].[2020-07-26].https://fas.org/sgp/crs/misc/R44101.pdf. |
[9] | 赵旭辉.管窥暗网: 揭开章莹颖案背后的神秘面纱[J]. 武汉公安干部学院学报, 2019,( 3):67-70. |
ZHAO Xuhui. Peeking through the Dark Web:Uncovering the Mystery behind the Zhang Yingying Case[J]. Journal of Wuhan Public Security Cadre's College, 2019,( 3):67-70. | |
[10] | 郭航. 警惕暗网欺诈和个人信息违法交易[J]. 中国金融家, 2019,( 8):126-127. |
GUO Hang. Beware of Dark Web Fraud and Illegal Trading of Personal Information[J]. China Financialyst, 2019,( 8):126-127. | |
[11] | 贾凌宇. Tor 匿名流量分析关键技术的研究与实现[D]. 哈尔滨:哈尔滨工业大学, 2017. |
[12] | 倪俊. 从社会治理角度认知暗网的威胁与应对[J]. 信息安全与通信保密, 2017,( 11):88-93. |
NI Jun. Understanding Threats of the Dark Web and Corresponding Solutions from the Perspective of Social Governance[J]. Information Security and Communications Privacy, 2017,( 11):88-93. | |
[13] | 王继林, 伍前红, 陈德人, 等. 匿名技术的研究进展[J]. 通信学报, 2005,26(2):112-118. |
WANG Jilin, WU Qianhong, CHEN Deren, et al. A Survey on the Technology of Anonymity[J]. Journal on Communications, 2005,26(2):112-118. | |
[14] | 裘玥. 匿名网络的安全监管隐患与信息获取技术研究[J]. 信息网络安全, 2015,15(9):106-108. |
QIU Yue. Research on the Hidden Web Technology for the Network Content Security[J]. Netinfo Security, 2015,15(9):106-108. | |
[15] | CHAUM D L.Untraceable Electronic Mail,Return Addresses,and Digital Pseudonyms[J]. Communications of the ACM, 1981,24(2):84-88. |
[16] | MOLLER U, COTTRELL L, PALFRADER P, et al. Mixmaster Protocol Version 2[EB/OL].[2020-07-26].https://tools.ietf.org/html/draft-sassaman-mixmaster-00. |
[17] | 陆天波, 程晓明, 张冰. MIX 匿名通信技术研究[J]. 通信学报, 2007,28(12):108-115. |
LU Tianbo, CHENG Xiaoming, ZHANG Bing. Research on MIX-based Anonymous Communications[J]. Journal on Communications, 2007,28(12):108-115. | |
[18] | CHAUM D. The Dining Cryptographers Problem:Unconditional Sender and Recipient Untraceability[J]. Journal of Cryptology, 1988,1(1):65-75. |
[19] | GOLDBERG I, SHOSTACK A. Freedom Network 1.0 Architecture and Protocols[EB/OL].[2020-07-26].https://adam.shostack.org/zeroknowledgewhitepapers/arch-tech.pdf. |
[20] | 任帅, 慕德俊, 张弢, 等. 基于可信计算的 P2P 匿名通信系统[J]. 计算机测量与控制, 2009,17(5):965-966. |
REN Shuai, MU Dejun, ZHANG Tao, et al. Peer-to-Peer Anonymous Communication Network Based on Trusted Computing[J]. Computer Measurement & Control, 2009,17(5):965-966. | |
[21] | 莫家庆, 胡忠望, 林瑜华. 基于可信计算的匿名通信系统方案研究[J]. 计算机应用与软件, 2016,33(12):84-88. |
MO Jiaqing, HU Zhongwang, LIN Yuhua. Research on Trust Computing-based Anonymous Communication System Scheme[J]. Computer Applications and Software, 2016,33(12):84-88. | |
[22] | 徐静, 王振兴. 秘密共享的抗攻击匿名通信系统[J]. 计算机工程与应用, 2010,46(6):82-85. |
XU Jing, WANG Zhenxing. Secret Sharing Anti-attack Anonymous Communication System[J]. Computer Engineering and Applications, 2010,46(6):82-85. | |
[23] | ALEXOPOULOS N, KIAYIAS A, TALVISTE R, et al. MCMix:Anonymous Messaging Via Secure Multiparty Computation [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 1217-1234. |
[24] | BOGDANOV D. Sharemind:Programmable Secure Computations with Practical Applications[D]. Tartu:University of Tartu, 2013. |
[25] | 周彦伟, 吴振强, 杨波. 多样化的可控匿名通信系统[J]. 通信学报, 2015,36(6):109-119. |
ZHOU Yanwei, WU Zhenqiang, YANG Bo. Diversity of Controllable Anonymous Communication System[J]. Journal on Communications, 2015,36(6):109-119. | |
[26] | PIOTROWSKA A M, HAYES J, ELAHI T, et al. The Loopix Anonymity System [C]//Proceedings of the 2017 26th Security Symposium.Berkeley:USENIX Association, 2017: 1199-1216. |
[27] | GRUBE T, THUMMERER M, DAUBERT J, et al. Cover Traffic:a Trade of Anonymity and Efficiency [C]//Lecture Notes in Computer Science:10547.Heidelberg:Springer Verlag, 2017: 213-223. |
[28] | CHEN C, ASONI D E, PERRIG A, et al. TARANET:Traffic-analysis Resistant Anonymity at the Network Layer [C]//Proceedings of the 2018 3rd IEEE European Symposium on Security and Privacy.Piscataway:IEEE, 2018: 37-152. |
[29] | CHEN C. Infrastructure-based Anonymous Communication Protocols in Future Internet Architectures[D]. Pittsburgh:Carnegie Mellon University, 2018. |
[30] | JANSEN R, JUAREZ M, GALVEZ R, et al. Inside Job:Applying Traffic Analysis to Measure Tor from Within[C/OL].[2020-07-26].https://www.robgjansen.com/publications/insidejob-ndss2018.pdf. |
[31] | WAILS R, JOHNSON A, STARIN D, et al. Stormy:Statistics in Tor by Measuring Securely [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 615-632. |
[32] | MANI A, SHERR M. HisTorε:Differentially Private and Robust Statistics Collection for Tor[C/OL].[2020-07-26].2017 Network?and?Distributed System Security Symposium (NDSS),The Internet Society. |
[33] | ELAHI T, DANEZIS G, GLODBERG I. Privex:Private Collection of Traffic Statistics for Anonymous Communication Networks [C]//Proceedings of the 2014 ACM Conference on Computer and Communications Security.New York:ACM, 2014: 1068-1079. |
[34] | JANSEN R, JOHNSON A. Safely Measuring Tor [C]//Proceedings of the 2016 ACM Conference on Computer and Communications Security.New York:ACM, 2016: 1553-1567. |
[35] | JANSEN R, TRAUDT M, HOPPER N. Privacy-preserving Dynamic Learning of Tor Network Traffic [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1944-1961. |
[36] | MELIS L, DANEZIS G, DE CRISTOFARO E.Efficient Private Statistics with Succinct Sketches[C/OL].[ 2020- 07- 26]. http://damonmccoy.com/papers/tor-differential.NDSS16.pdf. |
[37] | KHATTAK S, FIFIELD D, AFROZ S, et al.Do You See what I See? Differential Treatment of Anonymous Users[C/OL].[ 2020- 07- 26]. http://damonmccoy.com/papers/tor-differential.NDSS16.pdf. |
[38] | SINGH R, NITHYANAND R, AFROZ S, et al. Characterizing the Nature and Dynamics of Tor Exit Blocking [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 325-341. |
[39] | YANG Y, YANG L, YANG M, et al. Dark Web Threat Intelligence and Market Analysis [C]//Proceedings of 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference.Piscataway:IEEE, 2019: 1216-1220. |
[40] | 李超, 周瑛, 魏星. 基于暗网的反恐情报分析研究[J]. 情报杂志, 2018,37(6):10-19. |
LI Chao, ZHOU Ying, WEI Xing. Research on Analysis of Counter-terrorism Intelligence Based on Dark Web[J]. Journal of Intelligence, 2018,37(6):10-19. | |
[41] | 陈璐. 暗网犯罪与多元治理:挑战与出路[J]. 铁道警察学院学报, 2019,29(1):83-90. |
CHEN Lu. Darknet Crime and Pluralistic Governance:Challenges and Solutions[J]. Journal of Railway Police College, 2019,29(1):83-90. | |
[42] | SCHUCHARD M, GEDDES J, THOMPSON C, et al. Routing Around Decoys [C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security.New York:ACM, 2012: 85-96. |
[43] | SUN Y, EDMUNDSON A, VANBEVER L, et al. Raptor:Routing Attacks on Privacy in Tor [C]//Proceedings of the 2015 24th USENIX Security Symposium.Berkeley:USENIX Association, 2015: 271-286. |
[44] | LI Z, HERWIG S, LEVIN D. Detor:Provably Avoiding Geographic Regions in Tor [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 343-359. |
[45] | KOHLS K, JANSEN K, RUPPRECHT D, et al. On the Challenges of Geographical Avoidance for Tor[C/OL].[2020-07-26].https://www.ndss-symposium.org/ndss-paper/on-the-challenges-of-geographical-avoidance-for-tor/. |
[46] | SUN Y, EDMUNDSON A, FEAMSTER N, et al. Counter-RAPTOR:Safeguarding Tor Against Active Routing Attacks [C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2017: 977-992. |
[47] | JOHNSON A, JANSEN R, JAGGARD A D, et al. Avoiding the Man on the Wire:Improving Tor's Security with Trust-aware Path Selection[J/OL].[2020-07-28].https://arxiv.org/pdf/1511.05453.pdf. |
[48] | SINGH A. POSTER:Improving Anonymity of Services Deployed Over Tor by Changing Guard Selection [C]//Proceedings of the 2017 ACM Conference on Computer and Communications Security.New York:ACM, 2017: 2579-2581. |
[49] | MATIC S, TRONCOSO C, CABALLERO J. Dissecting Tor Bridges:a Security Evaluation of Their Private and Public Infrastructures[C/OL].[2020-07-26].ttps://air.unimi.it/handle/2434/466611. |
[50] | NASR M, FARHANG S, HOUMANSADR A, et al. Enemy at the Gateways:Censorship-Resilient Proxy Distribution Using Game Theory[C/OL].[2020-07-26].https://www.ndss-symposium.org/ndss-paper/enemy-at-the-gateways-censorship-resilient-proxy-distribution-using-game-theory/. |
[51] | BARTON A, IMANI M, MING J, et al. Towards Predicting Efficient and Anonymous Tor Circuits [C]//Proceedings of the 2018 27th USENIX Security Symposium.Berkeley:USENIX Association, 2018: 429-444. |
[52] | GRESCHBACH B, PULLS T, ROBERTS L M, et al. The Effect of DNS on Tor's Anonymity[C/OL].[2020-07-26].https://arxiv.org/abs/1609.08187. |
[53] | NASR M, BAHRAMALI A, HOUMANSADR A. DeepCorr:Strong Flow Correlation Aacks on Tor Using Deep Learning [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1962-1976. |
[54] | NITHYANAND R, STAROV O, ZAIR A, et al. Measuring and Mitigating AS-level Adversaries against Tor[J/OL].[2020-07-29].https://arxiv.org/pdf/1505.05173.pdf. |
[55] | WANG T, GOLDBERG I. On Realistically Attacking Tor with Website Fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2016,2016(4):21-36. |
[56] | CAI X, ZHANG X C, JOSHI B, et al. Touching from a Distance:Website Fingerprinting Attacks and Defenses [C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security.New York:ACM, 2012: 605-616. |
[57] | WANG T, GOLDBERG I. Improved Website Fingerprinting on Tor [C]//Proceedings of the 2013 ACM Conference on Computer and Communications Security.New York:ACM, 2013: 201-212. |
[58] | YAN J, KAUR J. Feature Selection for Website Fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2018,2018(4):200-219. |
[59] | HAYES J, DANEZIS G. K-fingerprinting:a Robust Scalable Website Fingerprinting Technique [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 1187-1203. |
[60] | PANCHENKO A, LANZE F, PENNEKAMP J, et al. Website Fingerprinting at Internet Scale[C/OL].[2020-07-26].https://orbilu.uni.lu/handle/10993/24117. |
[61] | WANG T, GOLDBERG I. Walkie-talkie:an Efficient Defense Against Passive Website Fingerprinting Attacks [C]// Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 1375-1390. |
[62] | SIRINAM P, JUAREZ M, IMANI M, et al. Deep Fingerprinting:Undermining Website Fingerprinting Defenses with Deep Learning [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1928-1943. |
[63] | OVERDORF R, JUAREZ M, ACAR G, et al. How Unique is Your.Onion? An Analysis of the Fingerprintability of Tor Onion Services [C]//Proceedings of the 2017 ACM Conference on Computer and Communications Security.New York:ACM, 2017: 2021-2036. |
[64] | SIRINAM P, RAHMAN M S, MATHEWS N, et al. Triplet Fingerprinting:More Practical and Portable Website Fingerprinting with N-shot Learning [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 1131-1148. |
[65] | RIMMER V, PREUVENEERS D, JUAREZ M, et al. Automated Website Fingerprinting through Deep Learning [J/OL].[2020-07-29].https://arxiv.org/pdf/1708.06376.pdf. |
[66] | SHUSTERMAN A, KANG L, HASKAL Y, et al. Robust Website Fingerprinting Through the Cache Occupancy Channel [C]//Proceedings of the 2019 28th USENIX Security Symposium.Berkeley:USENIX Association, 2019: 639-656. |
[67] | LI S, GUO H, HOPPER N. Measuring Information Leakage in Website Fingerprinting Attacks and Defenses [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1977-1992. |
[68] | SCHWARZ M, LACKNER F, GRUSS D. JavaScript Template Attacks:Automatically Inferring Host Information for Targeted Exploits[C/OL].[2020-07-26].https://gruss.cc/files/jstemplate.pdf. |
[69] | ARP D, YAMAGUCHI F, RIECK K. Torben:A Practical Side-channel Attack for Deanonymizing Tor Communication [C]//Proceedings of the 2015 10th ACM Symposium on Information,Computer and Communications Security.New York:ACM, 2015: 597-602. |
[70] | GILAD Y, HERZBERG A. Off-Path Attacking the Web [C]//Proceedings of the 2012 6th USENIX Workshop on Offensive Technologies.Berkeley:USENIX Association, 2012: 41-52. |
[71] | QIAN Z, MAO Z M. Off-path TCP Sequence Number Inference Attack-how Firewall Middleboxes Reduce Security [C]// Proceedings of the 2012 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2012: 347-361. |
[72] | CAO Y, QIAN Z, WANG Z, et al. Off-Path TCP Exploits:Global Rate Limit Considered Dangerous [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 209-225. |
[73] | JANSEN R, VAIDYA T, SHERR M. Point Break:a Study of Bandwidth Denial-of-service Attacks Against Tor [C]// Proceedings of the 2019 28th USENIX Security Symposium.Berkeley:USENIX Association, 2019: 1823-1840. |
[74] | SIVAKORN S, POLAKIS I, KEROMYTIS A D. The Cracked Cookie Jar:HTTP Cookie Hijacking and the Exposure of Private Information [C]//Proceedings of the 2016 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2016: 724-742. |
[75] | MATIC S, KOTZIAS P, CABALLERO J. Caronte:Detecting Location Leaks for Deanonymizing Tor Hidden Services [C]//Proceedings of the 2015 ACM Conference on Computer and Communications Security.New York:ACM, 2015: 1455-1466. |
[76] | LOE A F, QUAGLIA E A. You Shall Not Join:A Measurement Study of Cryptocurrency Peer-to-Peer Bootstrapping Techniques [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 2231-2247. |
[77] | BIRYUKOV A, PUSTOGAROV I. Bitcoin Over Tor isn't a Good Idea [C]//Proceedings of the 2015 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2015: 122-134. |
[78] | WINTER P, ENSAFI R, LOESING K, et al. Identifying and Characterizing Sybils in the Tor Network [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 1169-1185. |
[79] | DOUCEUR J R. The Sybil Attack [C]//Lecture Notes in Computer Science:2429.Heidelberg:Springer Verlag, 2002: 251-260. |
[80] | 汤艳君, 安俊霖. 基于Tor的暗网数据爬虫设计与实现[J]. 信息安全研究, 2019,5(9):798-804. |
TANG Yanjun, AN Junlin. Design and Implementation of Dark Net Data Crawler Based on Tor[J]. Journal of Information Security Research, 2019,5(9):798-804. | |
[81] | 杨溢, 郭晗, 王轶骏, 等. 基于Tor的暗网空间资源探测[J]. 通信技术, 2017,50(10):2304-2309. |
YANG Yi, GUO Han, WANG Yijun, et al. Darknet Resource Exploring Based on Tor[J]. Communication Technology, 2017,50(10):2304-2309. | |
[82] | 杨云, 李凌燕, 魏庆征. 匿名网络Tor与I2P的比较研究[J]. 网络与信息安全学报, 2019,5(1):66-77. |
YANG Yun, LI Lingyan, WEI Qingzheng. Comparative Study of Anonymous Network Tor and I2P[J]. Chinese Journal of Network and Information Security, 2019,5(1):66-77. | |
[83] | CHUN B, CULLER D, ROSCOE T, et al. Planetlab:an Overlay Testbed for Broad-coverage Services[J]. Computer Communication Review, 2003,33(3):3-12. |
[84] | KOMOSNY D, MRDOVIC S, LLKO P, et al. Testing Internet Applications and Services Using PlanetLab[J]. Computer Standards and Interfaces, 2017,53:33-38. |
[85] | BAUER K, SHERR M, MCCOY D, et al. ExperimenTor:a Testbed for Safe and Realistic Tor Experimentation[C/OL].[2020-07-26].https://dl.acm.org/doi/10.5555/2027999.2028006. |
[86] | VISHWANATH K V, GUPTA D, VAHDAT A, et al. Modelnet:towards a Datacenter Emulation Environment [C]//Proceedings of the 2009 9th International Conference on Peer-to-Peer Computing.Washington:IEEE Computer Society, 2009: 81-82. |
[87] | JOHNSON A, WACEK C, JANSEN R, et al. Users Get Routed:Traffic Correlation on Tor by Realistic Adversaries [C]//Proceedings of the 2013 ACM Conference on Computer and Communications Security.New York:ACM, 2013: 337-348. |
[88] | JANSEN R, HOPPER N J. Shadow:Running Tor in a Box for Accurate and Efficient Experimentation[C/OL].[2020-07-26].https://www.mendeley.com/catalogue/0303022f-3fa8-3335-b373-26c73d56f214/. |
[1] | YANG Xiaoyuan,TANG Hongqiong,NIU Ke,ZHANG Yingnan. Video steganography based on macroblock complexity [J]. Journal of Xidian University, 2022, 49(2): 164-172. |
[2] | SUN Xiyan,SONG Shaojie,JI Yuanfa,LIANG Weibin,LI Youming. Novel unambiguous tracking algorithm for BOC and its derivative signals [J]. Journal of Xidian University, 2022, 49(2): 58-66. |
[3] | LI Hua'an,BAI Baoming,XU Hengzhou,CHEN Chao. Algebraic method for constructing Raptor-like multi-rate QC-LDPC codes [J]. Journal of Xidian University, 2022, 49(1): 134-141. |
[4] | LIU Ge,RUI Guosheng,TIAN Wenbiao,TIAN Runlan,WANG Xiaofeng. Method for online reconstruction of marine monitoring data with sequential compressed sensing [J]. Journal of Xidian University, 2022, 49(1): 173-180. |
[5] | YANG Haibin,LI Ruifeng,YI Zhengge,NIU Ke,YANG Xiaoyuan. Efficient cloud storage data auditing scheme without bilinear pairing [J]. Journal of Xidian University, 2022, 49(1): 47-54. |
[6] | ZUO Kaizhong,LIU Rui,ZHAO Jun,CHEN Zhangyi,CHEN Fulong. Method for the protection of spatiotemporal correlation location privacy with semantic information [J]. Journal of Xidian University, 2022, 49(1): 67-77. |
[7] | MIAO Meixia,WU Panru,WANG Yunling. Research progress and applications of cryptographic accumulators [J]. Journal of Xidian University, 2022, 49(1): 78-91. |
[8] | TIAN Lin,SU Zhijie,FENG Wanmei,CHEN Zhen,TANG Jie,ZHOU Encheng. Trajectory and resource allocation for multi-UAV enabled swipt systems [J]. Journal of Xidian University, 2021, 48(6): 115-122. |
[9] | CHEN Rong,XU Hongli,YANG Dongxue,HUANG Hua. Dense three-dimensional reconstruction algorithm based on spatially encoded structured light [J]. Journal of Xidian University, 2021, 48(6): 123-130. |
[10] | LI Yuan,CUI Yushuang,WANG Wei. Method for the analysis of text sentiment based on the word dual-channel network [J]. Journal of Xidian University, 2021, 48(6): 179-186. |
[11] | GE Bin,CHEN Xu,CHEN Gang. Fast hyper-chaotic image encryption algorithm using vector operation [J]. Journal of Xidian University, 2021, 48(6): 187-196. |
[12] | DAI Mingjun,LI Xiaofeng,DENG Haiyan,CHEN Bin. Private information retrieval with low encoding/decoding complexity [J]. Journal of Xidian University, 2021, 48(6): 212-220. |
[13] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[14] | TAN Wen,GAN Xinbiao,BAI Hao,XIAO Tiaojie,CHEN Xuguang,LEI Shumeng,LIU Jie. Optimization of large-scale graph traversal for supercomputers [J]. Journal of Xidian University, 2021, 48(6): 84-95. |
[15] | GU Zhaojun,CHEN Hui,WANG Jialiang,GAO Bing. Target tracking control algorithm for small size quad-rotor helicopter [J]. Journal of Xidian University, 2021, 48(5): 117-127. |
|