[1] |
NING H, LI Y, SHI F, et al. Heterogeneous Edge Computing Open Platforms and Tools for Internet of Things[J]. Future Generation Computer Systems, 2020, 106:67-76.
doi: 10.1016/j.future.2019.12.036
|
[2] |
张平, 李世林, 刘宜明, 等. 区块链赋能的边缘异构计算系统中资源调度研究[J]. 通信学报, 2020, 41(10):1-14.
|
|
ZHANG Ping, LI Shilin, LIU Yiming, et al. Resource Management in Blockchain-Enabled Heterogeneous Edge Computing System[J]. Journal on Communications, 2020, 41(10):1-14.
|
[3] |
AGOSTA G, FORNACIARI W, ATIENZA D, et al. The RECIPE Approach to Challenges in Deeply Heterogeneous High Performance Systems[J]. Microprocessors and Microsystems, 2020, 77:103185.
doi: 10.1016/j.micpro.2020.103185
|
[4] |
SHIRVANI M H. A Hybrid Meta-Heuristic Algorithm for Scientific Workflow Scheduling in Heterogeneous Distributed Computing Systems[J]. Engineering Applications of Artificial Intelligence, 2020, 90:103501.
doi: 10.1016/j.engappai.2020.103501
|
[5] |
陆继翔, 方博雅. 移动边缘计算的多用户计算卸载研究及实验[J]. 西安电子科技大学学报, 2020, 47(4):78-85.
|
|
LU Jixiang, FANG Boya. Research And Experiment on Multi-User Computational Offloading Based on Mobile Edge Computing[J]. Journal of Xidian University, 2020, 47(4):78-85.
|
[6] |
LIU B, XU X, QI L, et al. Task Scheduling with Precedence and Placement Constraints for Resource Utilization Improvement in Multi-User MEC Environment[J]. Journal of Systems Architecture, 2021, 114:101970.
doi: 10.1016/j.sysarc.2020.101970
|
[7] |
KESHANCHI,B,, SOURI A, NAVIMIPOUR N J. An Improved Genetic Algorithm for Task Scheduling in the Cloud Environments Using the Priority Queues:Formal Verification,Simulation,and Statistical Testing[J]. Journal of Systems and Software, 2017, 124:1-21.
doi: 10.1016/j.jss.2016.07.006
|
[8] |
KAMALINIA A, GHAFFARI A. Hybrid Task Scheduling Method for Cloud Computing by Genetic and DE Algorithms[J]. Wireless Personal Communications, 2017, 97(4):6301-6323.
doi: 10.1007/s11277-017-4839-2
|
[9] |
SUTTON R S, BARTO A G. Reinforcement learning:An introduction[M]. Cambridge: MIT Press, 1998.
|
[10] |
WANG H, WU Y, MIN G, et al. Data-Driven Dynamic Resource Scheduling for Network Slicing:A Deep Reinforcement Learning Approach[J]. Information Sciences, 2019, 498:106-116.
doi: 10.1016/j.ins.2019.05.012
|
[11] |
WEI Y, PAN L, LIU S, et al. DRL-Scheduling:An Intelligent QoS-Aware Job Scheduling Framework for Applications in Clouds[J]. IEEE Access, 2018, 6:55112-55125.
doi: 10.1109/ACCESS.2018.2872674
|
[12] |
PENG Z, CUI D, ZUO J, et al. Random Task Scheduling Scheme Based on Reinforcement Learning in Cloud Computing[J]. Cluster Computing, 2015, 18(4):1595-1607.
doi: 10.1007/s10586-015-0484-2
|
[13] |
徐冰冰, 岑科廷, 黄俊杰 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 043(005):755-780.
|
|
XU Bingbing, CEN Keting, HUANG Junjie, et al. A Survey on Graph Convolutional Neural Network[J]. Chinese Journal of Computers, 2020, 43(5):755-780.
|
[14] |
SHI Q, LAM H K, XUAN C, et al. Adaptive Neuro-Fuzzy PID Controller Based on Twin Delayed Deep Deterministic Policy Gradient Algorithm[J]. Neurocomputing, 2020, 402:183-194.
doi: 10.1016/j.neucom.2020.03.063
|
[15] |
MAO H, SCHWARZKOPF M, VENKATAKRISHNANS B, et al. Learning Scheduling Algorithms for Data Processing Clusters[C]// Proceedings of the ACM Special Interest Group on Data Communication.New York:ACM, 2019:270-288.
|
[16] |
ZHOU J, CUI G, ZHANG Z, et al. Graph Neural Networks:A Review of Methods and Applications[J]. AI Open, 2020, 1:57-81.
doi: 10.1016/j.aiopen.2021.01.001
|
[17] |
冉龙宇. 基于深度强化学习的高效能云任务调度算法研究[D]. 北京:中国科学院大学(中国科学院重庆绿色智能技术研究院), 2020.
|
[18] |
DU L. How Much Deep Learning does Neural Style Transfer Really Need? An Ablation Study[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Piscataway:IEEE, 2020:3150-3159.
|