[1] |
李晓伟, 杨邓奇, 曾新, 等. 车联网环境下跨域间认证与密钥协商协议[J]. 西安电子科技大学学报, 2021, 48(1):141-148.
|
|
LI Xiaowei, YANG Dengqi, ZHENG Xin, et al. Cross-Domain Authentication and the Key Agreement Protocol in VANETs[J]. Journal of Xidian University, 2021, 48(1):141-148.
|
[2] |
GOO E H, LEE S D. Reconfigurable Real Number Field Elliptic Curve Cryptography to Improve the Security[J]. Journal of Computer Virology and Hacking Techniques, 2015, 11(3):123-128.
doi: 10.1007/s11416-014-0233-8
|
[3] |
DRUCKER N, GUERON S. Speeding-Up P-256 ECDSA Verification on x86-64 Servers[J]. IEEE Letters of the Computer Society, 2019, 2(2):12-15.
doi: 10.1109/LOCS.2019.2911063
|
[4] |
ISLAM M M, HOSSAIN M S, HASAN M K, et al. FPGA Implementation of High-Speed Area-Efficient Processor for Elliptic Curve Point Multiplication over Prime Field[J]. IEEE Access, 2019, 7:178811-178826.
doi: 10.1109/ACCESS.2019.2958491
|
[5] |
KHLEBORODOV D. FastElliptic Curve Point Multiplication Based on Binary and Binary Non-Adjacent Scalar form Methods[J]. Advances in Computational Mathematics,Advances in Computational Mathematics, 2018, 44(4):1275-1293.
|
[6] |
WANG W, FAN S. Attacking OpenSSL ECDSA withA Small Amount of Side-Channel Information[J]. Science China Information Sciences, 2018, 61(3):1-14.
doi: 10.1007/s11432-017-9235-7
|
[7] |
DIMITROV V, IMBERT L, MISHRA P K. Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains[C]// International Conference on the Theory and Application of Cryptology and Information Security.Heibelheig:Springer, 2005:59-78.
|
[8] |
CHO S M, GWAK S G, KIM C H, et al. Faster Elliptic Curve Arithmetic for Triple-Base Chain by Reordering Sequences of Field Operations[J]. Multimedia Tools and Applications, 2016, 75(22):14819-14831.
doi: 10.1007/s11042-016-3272-y
|
[9] |
XU M, SHI L. Pseudo 4DProjective Coordinate-Based Multi-Base Scalar Multiplication[J]. Journal on Communications, 2018, 39(5):74-84.
|
[10] |
YU W, MUSA S, LI B. Double-Base Chains for Scalar Multiplications on Elliptic Curves[C]// Annual International Conference on the Theory and Applications of Cryptographic Techniques.Heibelherg:Springer, 2020:538-565.
|
[11] |
LEIVA C, THÉRIAULT N.Optimal 2-3 Chains for Scalar Multiplication[C]// International Conference on Cryptology and Information Security in Latin America.Heibelherg:Springer, 2019:89-108.
|
[12] |
GOUNDAR R R. Addition Chains in Application to Elliptic Curve Cryptosystems[D]. Kochi: Kochi University, 2008.
|
[13] |
OKEYA K, KATO H, NOGAMI Y. Width-3Joint Sparse Form[C]// International Conference on Information Security Practice and Experience.Heibelherg:Springer, 2010:67-84.
|
[14] |
MAITRA S, SINHA A. New Algorithm to Convert any Integer in TBNS[J]. International Journal of Computer Applications, 2012, 51(5):40-45.
|
[15] |
YU W, WANG K, LI B, et al. Joint Triple-Base Number System for Multi-Scalar Multiplication[C]// International Conference on Information Security Practice and Experience.Heibelherg:Springer, 2013:160-173.
|
[16] |
DOCHE C, SUTANTYO D. New and Improved Methods to Analyze and Compute Double-Scalar Multiplications[J]. IEEE Transactions on Computers, 2014, 63(1):230-242.
doi: 10.1109/TC.2012.184
|
[17] |
DANGER J L, GUILLEY S, HOOGVORST P, et al. Improving the Big Mac Attack on Elliptic Curve Cryptography[J]. The New Codebreakers, 2016, 9100:374-386.
|
[18] |
DOU Y, JIANG W, MA C, et al. Fast Scalar Multiplication Algorithm Using Constrained Triple-Base Number System and Its Applications[C]// 2015 10th International Conference on Broadband and Wireless Computing,Communication and Applications (BWCCA).Piscataway:IEEE, 2015:426-431.
|
[19] |
XU J, AIPING L, HUI Z. PAPER A Structured Multi-Dimensional Sequence Pattern Mining Method[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2017, 100(9):1838-1845.
|
[20] |
PHALAKARN K, SUPPAKITPAISARN V. Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication[J]. Journal of Chemical Information and Modeling, 2018, 8(2):166-185.
|
[21] |
李艳梅, 殷新春, 邵梦丽. 基于多基表示的滑动窗口椭圆曲线多标量乘算法[J]. 计算机与现代化, 2019, 1:11-16.
|
|
LI Yanmei, YIN Xinchun, SHAO Mengli. Multi-Scalar Multiplication Algorithm for Elliptic Curve Based on MBNS and Sliding Window[J]. Computer and Modernization, 2019, 1:11-16.
|
[22] |
DOU Y, WENG J, MA C, et al. Analysis of GLV / GLS Method for Elliptic Curve Scalar Multiplication[C]// International Conference on Frontier Computing.Heidelberg:Springer, 2018:210-219.
|
[23] |
YI H, LUO G, LIN D. Faster Scalar Multiplication on the x-Line:Three-Dimensional GLV Method with Three-Dimensional Differential Addition Chains[C]// International Conference on Codes,Cryptology,and Information Security.Heidelberg:Springer, 2019:236-253.
|
[24] |
尤文珠, 葛海波. 利用多基链的椭圆曲线多标量乘高效算法(2021)[J/OL]. [2021-03-30]. https://www.doc88.com/p-70459499563290.html?r=1.
|
[25] |
BOUVIER C, IMBERT L. Faster Cofactorization with ECM Using Mixed Representations[C]// IACR International Conference on Public-Key Cryptography.Heidelberg:Springer, 2020:483-504.
|
[26] |
DE MICHELI G, PIAU R, PIERROT C. A Tale of Three Signatures:Practical Attack of ECDSA with wNAF[C]// International Conference on Cryptology in Africa.Heidelberg:Springer, 2020:361-381.
|
[27] |
LIU L, CUI X, RAN Y, et al. A Countermeasure for Power Analysis to Scalar Multiplication of ECC Hardware[C]// 2015 IEEE 11th International Conference on ASIC (ASICON).Piscataway:IEEE, 2015:1-4.
|
[28] |
MAITRA S, SINHA A. Triple-Base Hybrid Joint Sparse Form and its Applications[J]. International Journal of Computer Applications, 2012, 43(3):9-20.
doi: 10.5120/6082-8223
|