[1] |
YE M, SHEN J, LIN G, et al. Deep Learning for Person Re-Identification:A Survey and Outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6):2872-2893.
doi: 10.1109/TPAMI.2021.3054775
|
[2] |
GU X Q, CHANG H, MA B P, et al. Clothes-Changing Person Re-Identification with RGB Modality Only[C]//Proceedings of the IEEE/CVF 2022 Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2022:1060-1069.
|
[3] |
TERRANCE D, GRAHAM W T. Improved Regularization of Convolutional Neural Networks with Cutout (2017)[J/OL].[2017-08-15]. https://arxiv.org/abs/1708.04552.
|
[4] |
ZHONG Z, ZHENG L, KANG G, et al. Random Erasing Data Augmentation[C]//Proceedings of the AAAI 2020 Conference on Artificial Intelligence. Palo Alto: AAAI, 2020:13001-13008.
|
[5] |
ZHANG H, MOUSTAPHA C, YANN N D, et al. Mixup :Beyond Empirical Risk Minimization[C]//Proceedings of the International Conference on Learning Representations(2018).Piscataway:IEEE, 2018:1-13.
|
[6] |
YUN S, HAN D, CHUN S, et al. CutMix:Regularization Strategy to Train Strong Classifiers with Localizable Features[C]//2019 IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2019:6022-6031.
|
[7] |
WANG J, LAN C, LIU C, et al. Generalizing to Unseen Domains:A Survey on Domain Generalization (2022)[J/OL].[2022-04-24]. https://arxiv.org/abs/2103.03097.
|
[8] |
LI P, XU Y, WEI Y, et al. Self-Correction for Human Parsing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7):3260-3271.
doi: 10.1109/TPAMI.2020.3048039
|
[9] |
YU S, LI S, CHEN D, et al. COCAS:A Large-Scale Clothes Changing Person Dataset for Re-Identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3397-3406.
|
[10] |
ZHENG Z, YANG X, YU Z, et al. Joint Discriminative and Generative Learning for Person Re-Identification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:2133-2142.
|
[11] |
TANG C, GUO J. Clothes-Changing Image Generation Based on Attention for Person Re-Identification[C]//2020 5th International Conference on Mechanical,Control and Computer Engineering.Piscataway:IEEE, 2020:2009-2013.
|
[12] |
GONG K, LIANG X, ZHANG D, et al. Look into Person:Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:6757-6765.
|
[13] |
YANG Q, WU A, ZHENG W S. Person Re-Identification by Contour Sketch Under Moderate Clothing Change[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6):2029-2046.
doi: 10.1109/TPAMI.2019.2960509
|
[14] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|
[15] |
DIEDERIK P K, JIMMY B. Adam:A Method for Stochastic Optimization (2015)[C/OL],[2015-07-23]. https://arxiv.org/abs/1412.6980.
|
[16] |
SUN Y, ZHENG L, YANG Y, et al. Beyond Part Models:Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)[C]//Proceedings of the European Conference on Computer Vision. Piscataway:IEEE, 2018:480-496.
|
[17] |
HOU R B, MA B P, CHANG H, et al. Interaction-and-Aggregation Network for Person Re-Identifification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:9309-9318.
|
[18] |
HUANG Y, WU Q, XU J S, et al. Clothing Status Awareness for Long-Term Person Re-Identifification[C]//2021 IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2021:11875-11884.
|
[19] |
HONG P, WU T, WU A, et al. Fine-Grained Shape-Appearance Mutual Learning for Cloth-Changing Person Re-Identification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:10508-10517.
|
[20] |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer:Hierarchical Vision Transformer Using Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2021:9992-10002.
|