Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (4): 206-214.doi: 10.19665/j.issn1001-2400.2023.04.020
• Special Issue on Cyberspace Security • Previous Articles Next Articles
YANG Yanyan1(),DU Yanhui1(),LIU Hongmeng2(),ZHAO Jiapeng2(),SHI Jinqiao2(),WANG Xuebin3()
Received:
2023-01-21
Online:
2023-08-20
Published:
2023-10-17
Contact:
Jiapeng ZHAO
E-mail:53996587@qq.com;duyanhui@ppsuc.edu.cn;cs2lhm@bupt.edu.cn;zhaojiapeng@bupt.edu.cn;shijinqiao@bupt.edu.cn;wangxuebin@iie.ac.cn
CLC Number:
YANG Yanyan,DU Yanhui,LIU Hongmeng,ZHAO Jiapeng,SHI Jinqiao,WANG Xuebin. Dark web author alignment based on attention augmented convolutional networks[J].Journal of Xidian University, 2023, 50(4): 206-214.
"
方法 | 广场市场 | 丝绸之路 | ||
---|---|---|---|---|
MRR | Recall@10 | MRR | Recall@10 | |
只考虑文本建模 | ||||
TextCNN(2014)[ | 0.126 | 0.214 | 0.036 | 0.073 |
Transformer (2017)[ | 0.091 | 0.133 | 0.026 | 0.043 |
DACN | 0.131 | 0.179 | 0.080 | 0.124 |
考虑用户建模 | ||||
IUR (2019)[ | 0.114 | 0.218 | 0.109 | 0.190 |
SYSML-CNN (2021)[ | 0.152 | 0.279 | 0.157 | 0.252 |
SYSML-Transformer (2021)[ | 0.133 | 0.235 | 0.103 | 0.175 |
DACN | 0.181 | 0.302 | 0.193 | 0.282 |
[1] | KIM Y. Convolutional Neural Networks for Sentence Classification (2014)[C/OL].[2014-08-25]. https://arxiv.org/abs/1408.5882v2. |
[2] | ANDREWS M, WITTEVEEN S. Unsupervised Natural Question Answering with a Small Model (2019)[C/OL].[2019-11-19]. https://arxiv.org/abs/1911.08340v1. |
[3] | MANERIKERP, HE Y, PARTHASARATHY S. SYSML:StYlometry with Structure and Multitask Learning:Implications for Darknet Forum Migrant Analysis (2021)[J/OL].[2021-04-01]. https://arxiv.org/abs/2104.00764. |
[4] | BELLO I, ZOPH B, LE Q, et al. Attention Augmented Convolutional Networks[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE, 2019:3285-3294. |
[5] | STANOVSKY G, GRUHL D, MENDES P. Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Stroudsburg:ACL, 2017:142-151. |
[6] | SEBASTIAN R, PARSA G, JOHN G B. Character-Level and Multi-Channel Convolutional Neural Networks for Large-Scale Authorship Attribution (2016)[J/OL].[2016-09-21]. https://arxiv.org/abs/1609.06686. |
[7] | PRASHA S, SEBASTIAN S, FABIO G, et al. Convolutional Neural Networks for Authorship Attribution of Short Texts[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Stroudsburg:ACL, 2017:669-674. |
[8] | RICO S, BARRY H, ALEXANDRA B. Neural Machine Translation of Rare Words with Subword Units[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL, 2016:1715-1725. |
[9] | PIOTR G, EWA J, MACIEJ P. Sparse Coding in Authorship Attribution for Polish Tweets[C]// Proceedings of the International Conference on Recent Advances in Natural Language Processing.Stroudsburg:ACL, 2019:409-417. |
[10] | MOHAMMADREZA E, MIHAI S, SAGAR S, et al. Detecting Cyber Threats in Non-English Dark Net Markets:A Crosslingual Transfer Learning Approach[C]// 2018 IEEE International Conference on Intelligence and Security Informatics (ISI).Piscataway:IEEE, 2018:85-90. |
[11] | ASHISH V, NOAM S, NIKI P, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010. |
[12] | DZMITRY B, KYUNGHYUN C, YOSHUA B. Neural Machine Translation by Jointly Learning to Align and Translate (2014)[C/OL].[2014-09-01]. https://arxiv.org/abs/1409.0473. |
[13] | AADAMS W Y, DAVID D, MINH-THANG L, et al. QAnet:Combining Local Convolution with Global Self-Attention for Reading Comprehension (2018)[C/OL].[2018-04-23]. https://arxiv.org/abs/1804.09541. |
[14] | DAVID R.S, CHEN L, QUOC V. The Evolved Transformer (2019)[C/OL].[2019-01-30]. https://arxiv.org/abs/1901.11117. |
[15] | JIE H, LI S, SAMUEL A, et al. Gather-Excite:Exploiting Feature Context in Convolutional Neural Networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018:9423-9433. |
[16] | JIE H, LI S, GANG S. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition.Piscataway:IEEE, 2018:7132-7141. |
[17] | JONGCHAN P, SANGHYUN W, JOON-YOUNG L, et al. Bam:Bottleneck Attention Module (2018)[C/OL].[2018-07-17]. https://arxiv.org/abs/1807.06514v1. |
[18] | SANGHYUN W, JONGCHAN P, JOON-YOUNG L, et al. Cbam:Convolutional Block Attention Module[C]// Proceedings of the European Conference on Computer Vision (ECCV).Heidelberg:Springer, 2018:3-19. |
[19] | WANG X L, ROSS G, ABHINAV G, et al. Non-Local Neural Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7794-7803. |
[20] | FAN Y, ZHANG Y, YE Y, et al. AutomaticOpioid User Detection from Twitter:Transductive Ensemble Built on Different Metagraph Based Similarities over Heterogeneous Information Network[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018:3357-3363. |
[21] | HOU S, YE Y, SONG Y, et al. Hindroid:AnIntelligent Android Malware Detection System Based on Structured Heterogeneous Information network[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017:1507-1515. |
[22] | FU T, LEE W, LEI Z. 2017.Hin2vec:ExploreMeta-Paths in Heterogeneous Information Networks for Representation Learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017:1797-1806. |
[23] | DONG Y, NITESH V.C, ANANTHRAM S. Metapath2vec:Scalable Representation Learning for heterogeneous Networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mning. New York: ACM, 2017:135-144. |
[24] | ZHANG Y, FAN Y, SONG W, et al. Your Style Your Identity:Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network[C]// International World Wide Web Conference Committee. New York: ACM, 2019:3448-3454. |
[25] | RAMNATH K, SHWETA Y, RAMINTA D, et al. Edarkfind:Unsupervised Multi-View Learning for Sybil Account Detection[C]// International World Wide Web Conference Committee. New York: ACM, 2020:1955-1965. |
[26] | NICHOLAS A, MARCUS B. LearningInvariant Representations of Social Media Users (2019)[C/OL].[2019-10-11]. https://arxiv.org/abs/1910.04979. |
[27] | JACOB D, CHANG M, KENTON L, et al. BERT:Pre-Training of Deep Bidirectional Transformers for Language Understanding (2018)[C/OL].[2018-10-11]. https://arxiv.org/abs/1810.04805. |
[1] | WANG Juan,LIU Zishan,WU Minghu,CHEN Guanhai,GUO Liquan. Multi-scale object detection algorithm combined with super-resolution reconstruction technology [J]. Journal of Xidian University, 2023, 50(3): 122-131. |
[2] | WANG Keyan,CHENG Jicong,HUANG Shirui,CAI Kunlun,WANG Weiran,LI Yunsong. Low-light image dehazing network with aggregated context-aware attention [J]. Journal of Xidian University, 2023, 50(2): 23-32. |
[3] | ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, WEI Dongdong, HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[4] | LIU Bochong, CAI Huaiyu, YANG Shiyuan, LI Haotian, WANG Yi, CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[5] | ZHANG Yali, LI Wenyuan, LI Changlu, DING Shaobo. Method for enhancement of the multi-scale low-light image by combining an attention guidance [J]. Journal of Xidian University, 2023, 50(1): 129-136. |
[6] | CUI Shaoguo,CHEN Siqi,DU Xing. Dual graph attention networks model for target sentiment analysis [J]. Journal of Xidian University, 2023, 50(1): 137-148. |
[7] | GAN Ping, NONG Liping, ZHANG Wenhui, LIN Jiming, WANG Junyi. Attention spatial-temporal graph neural network for traffic prediction [J]. Journal of Xidian University, 2023, 50(1): 168-176. |
[8] | ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network [J]. Journal of Xidian University, 2022, 49(6): 76-85. |
[9] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[10] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[11] | LIU Di,GUO Jichang,WANG Yudong,ZHANG Yi. Multi-scale salient object detection network combining an attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 118-126. |
[12] | GAO Deyong,KANG Zibing,WANG Song,WANG Yangping. Method to recognize human action by using the convolutional block attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 144-155. |
[13] | MA Sike,ZHAO Meng,SHI Fan,SUN Xuguo,CHEN Shengyong. Attention driven nuclei segmentation method for cell clusters [J]. Journal of Xidian University, 2022, 49(2): 198-206. |
[14] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[15] | CHENG Lei,WANG Yue,TIAN Chunna. Residual attention mechanism for visual tracking [J]. Journal of Xidian University, 2020, 47(6): 148-157. |
|