Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (1): 72-85.doi: 10.19665/j.issn1001-2400.20230313
• Information and Communications Engineering • Previous Articles Next Articles
JIANG Laiwei1(), CHEN Zheng2(), YANG Hongyu1()
Received:
2023-01-08
Online:
2024-01-20
Published:
2023-09-06
CLC Number:
JIANG Laiwei, CHEN Zheng, YANG Hongyu. Research on aviation ad hoc network routing protocols in highly dynamic and complex scenarios[J].Journal of Xidian University, 2024, 51(1): 72-85.
"
文献 | 路由选择使用的信息 | 优化指标 | ||||
---|---|---|---|---|---|---|
端到端延迟 | 资源消耗 | 传输率 | 吞吐量 | 链路稳定性 | ||
ML-OLSR[ | 节点移动速度、负载 | √ | √ | |||
文献[ | 链路的稳定性、节点中心性 | √ | √ | √ | √ | |
QSRP[ | 路径寿命和负载 | √ | √ | √ | ||
MQSPR[ | 路径寿命、负载、延迟 | √ | √ | √ | √ | |
QoS-MUDOR[ | 路径寿命、节点速度 | √ | √ | |||
LESR[ | 路径寿命、节点速度 | √ | √ | √ | √ | |
NTAR[ | 链路寿命、负载 | √ | √ | |||
HSRP[ | 飞行流速 | √ | √ | √ | ||
GLSR[ | 节点缓存大小、位置 | √ | √ | √ | ||
A-GR[ | 节点速度、位置 | √ | √ | √ | √ | |
TAG[ | 节点位置、局部网络拓扑 | √ | ||||
GHRAA[ | 航线信息、节点速度和位置 | √ | √ | |||
NoDe-TBR[ | 节点密度、跳数 | √ | √ | √ | √ | |
AeroRP[ | 节点速度、位置 | √ | √ | √ | ||
RGR[ | 跳数、位置 | √ | ||||
文献[ | 跳数、位置、路线寿命 | √ | √ | √ | ||
TBCR[ | 位置、虚拟拓扑 | √ | √ | |||
文献[ | 跳数、链路负载 | √ | ||||
文献[ | 网络拓扑结构 | √ | √ | √ | ||
文献[ | 链路容量、链路的传输延迟、飞行阶段、QoS需求 | √ | √ | √ | √ | |
文献[ | 邻居拓扑信息 | √ | √ | √ | ||
文献[ | 距离、速度、排队延迟 | √ | √ | |||
QNGPSR[ | 邻居拓扑信息 | √ | √ | |||
文献[ | 距离、排队延迟 | √ |
[1] | VEY Q, PIROVANO A, RADZIK J, et al. Aeronautical Ad Hoc Network for Civil Aviation[C]//International Workshop on Communication Technologies for Vehicles. Heidelberg:Springer, 2014:81-93. |
[2] |
BILEN T, AHMADI H, CANBERK B, et al. Aeronautical Networks for In-Flight Connectivity:A Tutorial of the State-of-the-Art and Survey of Research Challenges[J]. IEEE Access, 2022, 10:20053-20079.
doi: 10.1109/ACCESS.2022.3151658 |
[3] | 崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11. |
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11. | |
[4] | 徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6):32-41. |
XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable Relay Selection Method under an Uncertain Preference Ordinal for UAV in Post-Disaster[J]. Journal of Xidian University, 2022, 49(6):32-41. | |
[5] | ICAO. ICAO Annex 6:Operation of Aircraft, Part I-International Commercial Air Transport[S]. Montreal:ICAO, 2022. |
[6] | ICAO. ICAO Doc 8126: Aeronautical Information Services Manual, Seventh Edition[S]. Montreal:ICAO, 2021. |
[7] | FAA.FAA Doc 10150:Manual on the Functional Specifications for the Location of an Aircraft in Distress Repository(LADR)[S]. Washington D.C.:FAA, 2021. |
[8] |
杨章林, 谢钧, 张耕强. 基于定向天线的飞行自组网定向路由协议综述[J]. 计算机科学, 2021, 48(11):334-344.
doi: 10.11896/jsjkx.210400182 |
YANG Zhanglin, XIE Jun, ZHANG Gengqiang. Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas[J]. Computer Science, 2021, 48(11):334-344.
doi: 10.11896/jsjkx.210400182 |
|
[9] | 刘浩江, 王浩, 柳宁, 等. 高动态航空自组网中考虑优先级的逐跳路由协议[J]. 计算机应用研究, 2020, 37(6):1821-1825. |
LIU Haojiang, WANG Hao, LIU Ning, et al. Hop by Hop Routing Protocol Considering Priority in High Dynamic Aviation Ad Hoc Networks[J]. Application Research of Computers, 2020, 37(6):1821-1825. | |
[10] |
PERKINS C E, BHAGWAT P. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers[J]. ACM SIGCOMM Computer Communication Review, 1994, 24(4):234-244.
doi: 10.1145/190809.190336 |
[11] | JACQUET P.RFC3626:Optimized link state routing protocol(OLSR)[S]. New York: ACM, 2003. |
[12] | ZHENG Y, WANG Y, LI Z, et al. A Mobility and Load Aware OLSR Routing Protocol for UAV Mobile Ad-Hoc Networks[C]// International Conference on Information & Communications Technologies(ICT 2014). Piscataway:IEEE, 2014:1-7. |
[13] | ZHANG L, HU L, HU F, et al. Enhanced OLSR Routing for Airborne Networks with Multi-Beam Directional Antennas[J]. Ad Hoc Networks, 2020, 102:102-116. |
[14] | KUMAR K, KASHYAP P K, KUMAR S. Aeronautical Assisted IoT Implementation:Route Lifetime and Load Capacity Perspective[C]//International Conference on Application of Computing and Communication Technologies. Heidelberg:Springer, 2018:162-172. |
[15] |
LUO Q, WANG J. Multiple QoS Parameters-Based Routing for Civil Aeronautical Ad Hoc Networks[J]. IEEE Internet of Things Journal, 2017, 4(3):804-814.
doi: 10.1109/JIOT.2017.2669993 |
[16] | JHONSON D.The Dynamic Source Routing Protocol(DSR) for Mobile Ad Hoc Networks for IPv4[S]. Wilmington:IETF, 2007. |
[17] | SAKHAEE E, JAMALIPOUR A, KATO N. Multipath Doppler Routing with QoS Support in Pseudo-Linear Highly Mobile Ad Hoc Networks[C]//2006 IEEE International Conference on Communications. Piscataway:IEEE, 2006, 8:3566-3571. |
[18] | PERKINS C, BELDING-ROYER E, DAS S.RFC3561:Ad Hoc on Demand Distance Vector(AODV) Routing[S]. New York: ACM, 2003. |
[19] |
LEI L, WANG D, ZHOU L, et al. Link Availability Estimation Based Reliable Routing for Aeronautical Ad Hoc Networks[J]. Ad Hoc Networks, 2014, 20:53-63.
doi: 10.1016/j.adhoc.2014.03.005 |
[20] | ZHOU J, LEI L, LIU W, et al. A Simulation Analysis of Nodes Mobility and Traffic Load Aware Routing Strategy in Aeronautical Ad Hoc Networks[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology(IBCAST). Piscataway:IEEE, 2012:423-426. |
[21] | HAAS Z, PERLMAN M, SAMAR P. The Zone Routing Protocol(ZRP) for Ad Hoc Networks[J]. IETF Mobile Ad-hoc Network(MANET) Working Group 98, 2002, 34(2):108. |
[22] | DONG Z, WANG Y, ZHU Y, et al. An Aeronautical Ad Hoc Network Routing Protocol Based on Air Vehicles Movement Features[C]// 2016 22nd International Conference on Applied Electromagnetics and Communications(ICECOM). Piscataway:IEEE, 2016:1-6. |
[23] | KARP B, GREED Y. Perimeter Stateless Routing for Wireless Networks[C]// MOBICOM 2000:Proceedings.6th Annual ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 2000:243-254. |
[24] |
MEDINA D, HOFFMANN F, ROSSETTO F, et al. A Geographic Routing Strategy for North Atlantic in-Flight Internet Access Via Airborne Mesh Networking[J]. IEEE/ACM Transactions on Networking, 2011, 20(4):1231-1244.
doi: 10.1109/TNET.2011.2175487 |
[25] |
WANG S, FAN C, DENG C, et al. A-GR:A Novel Geographical Routing Protocol for AANETs[J]. Journal of Systems Architecture, 2013, 59(10):931-937.
doi: 10.1016/j.sysarc.2013.07.011 |
[26] | NEWTON B, AIKAT J, JEFFAY K. Geographic Routing in Extreme-Scale Highly-Dynamic Mobile Ad Hoc Networks[C]// 2016 IEEE 24th International Symposium on Modeling,Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS). Piscataway:IEEE, 2016:205-210. |
[27] | KO Y B, VAIDA N H. Location-Aided Routing(LAR) in Mobile Ad Hoc Networks[C]// Proceedings of the 4th annual ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 1998:66-75. |
[28] | SAIFULLAH K, KIM K I. A New Geographical Routing Protocol for Heterogeneous Aircraft Ad Hoc Networks[C]// 2012 IEEE/AIAA 31st Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2012:4B5-1-4B5-9. |
[29] | NICULESCU D, NATH B. Trajectory Based Forwarding and Its Applications[C]//ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 2003:260-272. |
[30] | VEY Q, PUECHMOREL S, PIROVANO A, et al. Routing in Aeronautical Ad-Hoc Networks[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2016:1-10. |
[31] | JABBAR A. AERORP:A Geolocation Assisted Aeronautical Routing Protocol for Highly Dynamic Telemetry Environments[J]. International Telemetering Conference Proceedings, 2009, 45:1-10. |
[32] |
SHIRANI R, ST-HILAIRE M, KUNZ T, et al. On the Delay of Reactive-Greedy-Reactive Routing in Unmanned Aeronautical Ad-Hoc Networks[J]. Procedia Computer Science, 2012, 10:535-542.
doi: 10.1016/j.procs.2012.06.068 |
[33] | BIOMO J D M M, KUNZ T, ST-HILAIRE M. Routing in Unmanned Aerial Ad Hoc Networks:Introducing a Route Reliability Criterion[C]// 2014 7th IFIP Wireless and Mobile Networking Conference(WMNC). Piscataway:IEEE, 2014:1-7. |
[34] | BIOMO J D M M, KUNZ T, ST-HILAIRE M. Routing in Unmanned Aerial Ad Hoc Networks:A Recovery Strategy for Greedy Geographic Forwarding Failure[C]//2014 IEEE Wireless Communications and Networking Conference(WCNC). Piscataway:IEEE, 2014:2236-2241. |
[35] |
YANG J, SUN K, HE H, et al. Dynamic Virtual Topology Aided Networking and Routing for Aeronautical Ad-Hoc Networks[J]. IEEE Transactions on Communications, 2022, 70(7):4702-4716.
doi: 10.1109/TCOMM.2022.3177599 |
[36] | 邵天竺, 王晓亮, 陈文龙, 等. 一种减少网络振动的智能路由选择算法设计[J]. 计算机研究与发展, 2021, 58(6):1261-1274. |
SHO Tianzhu, WANG Xiaoliang, CHEN Wenlong, et al. Design of an Intelligent Routing Algorithm to Reduce Routing Flap[J]. Journal of Computer Research and Development, 2021, 58(6):1261-1274. | |
[37] | 刘又僖. 远海通信无线异构网络基于机器学习的路由研究[D]. 成都: 电子科技大学, 2022. |
[38] |
HOFFMANN F, MEDINA D, WOLISZ A. Joint Routing and Scheduling in Mobile Aeronautical Ad Hoc Networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6):2700-2712.
doi: 10.1109/TVT.2013.2246877 |
[39] |
CUI J, YETGIN H, LIU D, et al. Twin-Component Near-Pareto Routing Optimization for AANETs in the North-Atlantic Region Relying on Real Flight Statistics[J]. IEEE Open Journal of Vehicular Technology, 2021, 2:346-364.
doi: 10.1109/OJVT.2021.3095467 |
[40] |
RAO Z, XU Y, PAN S. A Deep Learning-Based Constrained Intelligent Routing Method[J]. Peer-to-Peer Networking and Applications, 2021, 14(4):2224-2235.
doi: 10.1007/s12083-021-01185-4 |
[41] | LUONG D K, HU Y F, LI J P, et al. Deep Learning Approach for the Multilink Selection Problem in Avionic Networks[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2020:1-5. |
[42] |
LIU D, ZHANG J, CUI J, et al. Deep-Learning-Aided Packet Routing in Aeronautical Ad Hoc Networks Relying on Real Flight Data:From Single-Objective to Near-Pareto Multiobjective Optimization[J]. IEEE Internet of Things Journal, 2021, 9(6):4598-4614.
doi: 10.1109/JIOT.2021.3105357 |
[43] | GURUMEKALA T, INDIRA GANDHI S. Toward in-Flight Wi-Fi:A Neuro-Fuzzy Based Routing Approach for Civil Aeronautical Ad hoc Network[J]. Soft Computing, 2022:1-22. |
[44] | 吕文凯, 杨鹏飞, 丁韵青, 等. JEDERL:一种异构计算平台任务调度优化算法[J]. 西安电子科技大学学报, 2021, 48(6):67-74. |
LV Wenkai, YANG Pengfei, DING Yunqing, et al. JEDERL:A Task Scheduling Optimization Algorithm for Heterogeneous Computing Platforms[J]. Journal of Xidian University, 2021, 48(6):67-74. | |
[45] |
XIAO Y, LI J, WU J, et al. On Design and Implementation of Reinforcement Learning Based Cognitive Routing for Autonomous Networks[J]. IEEE Communications Letters, 2023, 27(1):205-209.
doi: 10.1109/LCOMM.2022.3211342 |
[46] | LYU N, SONG G, YANG B, et al. QNGPSR:A Q-Network Enhanced Geographic Ad-Hoc Routing Protocol Based on GPSR[C]//2018 IEEE 88th Vehicular Technology Conference(VTC-Fall). Piscataway: IEEE, 2018:1-6. |
[47] |
LIU D, CUI J, ZHANG J, et al. Deep Reinforcement Learning Aided Packet-Routing for Aeronautical Ad-Hoc Networks Formed by Passenger Planes[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5):5166-5171.
doi: 10.1109/TVT.2021.3074015 |
[1] | LIU Lifang;WU Dan;LANG Xiaoguang;QI Xiaogang. Research on data transmission and survivability technology of the GEO/LEO satellite network [J]. Journal of Xidian University, 2018, 45(1): 1-5+54. |
[2] | TIAN Rui;LIU Maliang. High-speed serial interface for converter using the JESD204B protocol [J]. Journal of Xidian University, 2017, 44(4): 69-74. |
[3] |
XU Rui;LI Wei-hua;CHEN Hua-sheng.
Performance comparison and analysis of the tree-based on-demand multicast routing protocol in Ad Hoc networks [J]. J4, 2007, 34(4): 664-668. |
|