[1] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017:1273-1282.
|
[2] |
JIANG J, KANTARCI B, OKTUG S F, et al. Federated Learning in Smart City Sensing:Challenges and Opportunities[J]. Sensors, 2020, 20(21):6230.
|
[3] |
XU J, GLICKSBERG B S, SU C, et al. Federated Learning for Healthcare Informatics[J]. Journal of Healthcare Informatics Research 5, 2021, 5(1):1-19.
|
[4] |
TU X, ZHU K, LUONG N C, et al. Incentive Mechanisms for Federated Learning:From Economic and Game Theoretic Perspective(2021)[J/OL].[2021-11-20]. https://arxiv.org/abs/2111.11850v1.
|
[5] |
陈嘉翊, 孙晨雨, 周欣桐, 等. 基于联邦学习和同态加密的电力数据预测模型本地保护[J]. 信息安全研究, 2023, 9(3):228-234.
|
|
CHEN Jiayi, SUN Chenyu, ZHOU Xintong, et al. Local Privacy Protection for Power Data Prediction Model Based on Federated Learning and Homomorphic Encryption[J]. Information Security Research, 2023, 9(3):228-234.
|
[6] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
|
|
XU Hua, TIAN Youliang. Protection of Privacy of the Weighted Social Network under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-25.
|
[7] |
WANG F, XIE M, TAN Z, et al. Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 12(1):307-315.
|
[8] |
FU J, CHEN Z, HAN X. Adap DP-FL:Differentially Private Federated Learning with Adaptive Noise[C]//2022 IEEE International Conference on Trust,Security and Privacy in Computing and Communications(TrustCom).Piscataway:IEEE, 2022:656-663.
|
[9] |
粟勇, 刘文龙, 刘圣龙, 等. 基于安全洗牌和差分隐私的联邦学习模型安全防护方法[J]. 信息安全研究, 2022, 8(3):270-276.
|
|
SU Yong, LIU Wenlong, LIU Shenglong, et al. Secure Protection Method for Federated Learning Model Based on Secure Shuffling and Differential Privacy[J]. Information Security Research, 2022, 8(3):270-276.
|
[10] |
晏燕, 董卓越, 徐飞, 等. 一种Hilbert编码的本地化位置隐私保护方法[J]. 西安电子科技大学学报, 2022, 50(2):147-160.
|
|
YAN Yan, DONG Zhuofei, XU Fei, et al. Localized Location Privacy Protection Method Using the Hilbert Encoding[J]. Journal of Xidian University, 2022, 50(2):147-160.
|
[11] |
KONEN J, MCMAHAN H B, YU F X, et al. Federated Learning:Strategies for Improving Communication Efficiency(2016)[J/OL].[2016-10-18].https://arxiv.org/abs/1610.05492.
|
[12] |
LI T, SAHU A K, ZAHEER M, et al. Federated Optimization in Heterogeneous Networks(2018)[J/OL].[2018-12-14]. https://arxiv.org/abs/1812.06127v5.
|
[13] |
LIU W, CHEN L, CHEN Y, et al. Accelerating Federated Learning via Momentum Gradient Descent[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(8):1754-66.
|
[14] |
LIU X, LI Y, WANG Q, et al. Sparse Personalized Federated Learning via Maximizing Correlation(2021)[J/OL].[2021-07-12]. https://arxiv.org/abs/2107.05330v3.
|
[15] |
MELIS L, SONG C, CRISTOFARO E D, et al. Inference Attacks Against Collaborative Learning(2018)[J/OL].[2018-05-10]. https://arxiv.org/abs/1805.04049v1.
|
[16] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016:308-318.
|
[17] |
WEI K, LI J, DING M, et al. Federated Learning with Differential Privacy:Algorithms and Performance Analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15:3454-3469.
|
[18] |
WEI K, LI J, DING M, et al. User-Level Privacy-Preserving Federated Learning:Analysis and Performance Optimization[J]. IEEE Transactions on Mobile Computing, 2022, 21(9):3388-3401.
|
[19] |
WU X, ZHANG Y, SHI M, et al. AnAdaptive Federated Learning Scheme with Differential Privacy Preserving[J]. Future Generation Computer Systems, 2022, 127:362-72.
|
[20] |
XU Z, SHI S, LIU A X, et al. An Adaptive and Fast Convergent Approach to Differentially Private Deep Learning[C]//Proceedings of the IEEE INFOCOM 2020:International Conference on Computer Communications(INFOCOM). Piscataway:IEEE, 2020:1867-1876.
|
[21] |
KUMAR G, PRIYA G, DILEEP M, et al. Image Deconvolution using Deep Learning-based Adam Optimizer[C]//2022 6th International Conference on Electronics,Communication and Aerospace Technology.Piscataway:IEEE, 2022:901-904.
|
[22] |
XIANG L, YANG J, LI B. Differentially-Private Deep Learning from an Optimization Perspective[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway:IEEE, 2019:559-567.
|
[23] |
DWORK C. Differential Privacy[C].Proceedings of the 33rd International Conference on Automata,Languages and Programming. Heidelberg:Springer, 2006:1-10.
|
[24] |
LI N, LYU M, SU D, et al. Differential Privacy:From Theory to Practice[J]. Synthesis Lectures on Information Security,Privacy,and Trust, 2016, 8(4):1-138.
|
[25] |
GEYER R C, KLEIN T, NABI M. Differentially Private Federated Learning:A Client Level Perspective(2017)[J/OL].[2017-12-20]. https://arxiv.org/abs/1712.07557v2.
|