[1] |
WENIG P, SCHMIDL S, PAPENBROCK T. TimeEval:A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms[J]. Proceedings of the VLDB Endowment, 2022, 15(12):3678-3681.
|
[2] |
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31(3):726-747.
|
|
DING Xiaoou, YU Shengjian, WANG Muxian, et al. Anomaly Detection on Industrial Time Series Based on Correlation Analysis[J]. Journal of Software, 2020, 31(3):726-747.
|
[3] |
SCHMIDL S, WENIG P, PAPENBROCK T. Anomaly Detection in Time Series:A Comprehensive Evaluation[J]. Proceedings of the VLDB Endowment, 2022, 15(9):1779-1797.
|
[4] |
顾兆军, 刘婷婷, 隋翯. 一种ICS异常检测的优化GAN模型[J]. 西安电子科技大学学报, 2022, 49(2):173-181.
|
|
GU Zhaojun, LIU Tingting, SUI He. Latent Feature Reconstruction Generative GAN Model for ICS Anomaly Detection[J]. Journal of Xidian University, 2022, 49(2):173-181.
|
[5] |
YU Y, SI X, HU C, et al. A Review of Recurrent Neural Networks:LSTM Cells and Network Architectures[J]. Neural Computation, 2019, 31(7):1235-1270.
|
[6] |
PARK D, HOSHI Y, KEMP C C. A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3):1544-1551.
|
[7] |
SU Y, ZHAO Y, NIU C, et al. Robust Anomaly Detection for Multivariate Time Series Through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:2828-2837.
|
[8] |
LI D, CHEN D, JIN B, et al. MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]//I nternational Conference on Artificial Neural Networks. Heidelberg:Springer, 2019:703-716.
|
[9] |
AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD:Unsupervised Anomaly Detection on Multivariate Time Series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020:3395-3404.
|
[10] |
吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1):35-68.
|
|
WU Bo, LIANG Xun, ZHANG Shusen, et al. Advances and Applications in Graph Neural Network[J]. Chinese Journal of Computers, 2022, 45(1):35-68.
|
[11] |
DENG A, HOOI B. Graph Neural Network-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021:4027-4035.
|
[12] |
ZHAO H, WANG Y, DUAN J, et al. Multivariate Time-Series Anomaly Detection via Graph Attention Network[C]//2020 IEEE International Conference on Data Mining(ICDM).Piscataway:IEEE, 2020:841-850.
|
[13] |
CHEN Z, CHEN D, ZHANG X, et al. Learning Graph Structures with Transformer for Multivariate Time-Series Anomaly Detection in IoT[J]. IEEE Internet of Things Journal, 2021, 9(12):9179-9189.
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]//Advances in Neural Information Processing Systems(NIPS). San Diego: NIPS, 2017:6000-6010.
|
[15] |
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks(2016)[J/OL].[2016-09-09]. https://arxiv.org/pdf/1609.02907.pdf.
|
[16] |
BAI S, KOLTER J Z, KOLTUN V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling(2018)[J/OL].[2018-03-04]. https://arxiv.org/pdf/1803.01271.pdf.
|
[17] |
WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg:Springer, 2018:3-19.
|
[18] |
WU Z, PAN S, LONG G, et al. Connecting the Dots:Multivariate Time Series Forecasting with Graph Neural Networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020:753-763.
|
[19] |
FENG C, TIAN P. Time Series Anomaly Detection for Cyber-Physical Systems via Neural System Identification and Bayesian Filtering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021:2858-2867.
|
[20] |
XIE J, CUI Y, HUANG F, et al. MARINA:An MLP-Attention Model for Multivariate Time-Series Analysis[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022:2230-2239.
|
[21] |
KIM S, CHOI K, CHOI H S, et al. Towards a Rigorous Evaluation of Time-Series Anomaly Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2022:7194-7201.
|
[22] |
HAN S, WOO S S. Learning Sparse Latent Graph Representations for Anomaly Detection in Multivariate Time Series[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022:2977-2986.
|
[23] |
ZHANG Z, LI W, DING W, et al. STAD-GAN:Unsupervised Anomaly Detection on Multivariate Time Series with Self-Training Generative Adversarial Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(5):1-18.
|
[24] |
ZONG B, SONG Q, MIN M R, et al. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations. Piscataway:IEEE, 2018:1-19.
|
[25] |
DING C, SUN S, ZHAO J. MST-GAT:A Multimodal Spatial-Temporal Graph Attention Network for Time Series Anomaly Detection[J]. Information Fusion, 2023, 89:527-536.
|