[1] |
FENG C, TIAN P. Time Series Anomaly Detection for Cyber-physical Systems via Neural System Identification and Bayesian Filtering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021:2858-2867.
|
[2] |
ZHANG H, XIA Y, YAN T, et al. Unsupervised Anomaly Detection in Multivariate Time Series through Transformer-Based Variational Autoencoder[C]//2021 33rd Chinese Control and Decision Conference(CCDC).Kunming:CCDC, 2021:281-286.
|
[3] |
XIE L, PI D, ZHANG X, et al. Graph Neural Network Approach for Anomaly Detection[J]. Measurement, 2021, 180(1):109546.
|
[4] |
RUIZ L, GAMA F, RIBEIRO A. Gated Graph Recurrent Neural Networks[J]. IEEE Transaction Signal Process, 2020, 68:6303-6318.
|
[5] |
DENG A, HOOI B. Graph Neural Network-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021:4027-4035.
|
[6] |
ZHAO H, WANG Y, DUAN J, et al. Multivariate Time-Series Anomaly Detection via Graph Attention Network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining(ICDM). Piscataway:IEEE, 2020:841-850.
|
[7] |
NANDURI A, SHERRY L. Anomaly Detection in Aircraft Data Using Recurrent Neural Networks(RNN)[C]//Integrated Communications Navigation & Surveillance. Piscataway:IEEE, 2016:1-8.
|
[8] |
BONETTO R, SOLDAN M, LANARO A, et al. Seq2Seq RNN Based Gait Anomaly Detection from Smartphone Acquired Multimodal Motion Data(2019)[J/OL].[2019-11-19]. https://arxiv.org/pdf/1911.08608.
|
[9] |
MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-Based Encoder-Decoder for Multi-Sensor Anomaly Detection(2016)[J/OL].[2016-07-11]. https://arxiv.org/pdf/1607.00148v1.
|
[10] |
LIN S, CLARK R, BIRKE R, et al. Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway:IEEE, 2020:4322-4326.
|
[11] |
ZHANG C, SONG D, CHEN Y, et al. A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019:1409-1416.
|
[12] |
LI D, CHEN D, SHI L, et al. MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]//Artificial Neural Networks and Machine Learning. Heidelberg:Springer, 2019:703-716.
|
[13] |
AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD:UnSupervised Anomaly Detection on Multivariate Time Series[C]//Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020:3395-3404.
|
[14] |
杨静雅, 齐彦丽, 周一青, 等. CNN-Transformer轻量级智能调制识别算法[J]. 西安电子科技大学学报, 2023, 50(3):40-49.
|
|
YANG Jingya, QI Yanli, ZHOU Yiqing, et al. Algorithm for Recognition of Lightweight Intelligent Modulation Based on the CNN-Transformer Networks[J]. Journal of Xidian University, 2023, 50(3):40-49.
|
[15] |
TULI S, CASALE G, JENNINGS N R. TranAD:Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data(2022)[J/OL].[2022-05-14]. https://arxiv.org/pdf/2201.07284v6.
|
[16] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010.
|
[17] |
WANG X, PI D, ZHANG X, et al. Variational Transformer-Based Anomaly Detection Approach for Multivariate Time Series[J]. Measurement, 2022:191.
|
[18] |
YA S, ZHAO C, NIU R, et al. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network[C]//Conference on Knowledge Discovery and Data Mining(KDD’19). New York: ACM, 2019:2828-2837.
|
[19] |
SONG Q. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations. La Jolla: ICLR, 2018:1-19.
|
[20] |
DENG A, HOOI B. Graph Neural Network-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021:4027-4035.
|