Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (6): 133-147.doi: 10.19665/j.issn1001-2400.20230312
• Information and Communications Engineering & Computer Science and Technology • Previous Articles Next Articles
DU Mingyang(),DU Meng(),PAN Jifei(),BI Daping()
Received:
2023-01-03
Online:
2023-12-20
Published:
2024-01-22
CLC Number:
DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition[J].Journal of Xidian University, 2023, 50(6): 133-147.
"
模型 | 噪声类型 | 训练阶段Ⅰ | 训练阶段Ⅱ | 测试准确度 | 平均值 | |
---|---|---|---|---|---|---|
1 dB | -1 dB | |||||
脉冲噪声 | 43.27 | 77.25 | 24.24 | 5.92 | 35.80 | |
UNet | 高斯白噪声 | 71.50 | 83.83 | 56.49 | 40.84 | 60.40 |
高斯色噪声 | 67.20 | 83.85 | 51.55 | 33.96 | 56.50 | |
脉冲噪声 | 47.80 | 79.78 | 20.92 | 9.44 | 36.70 | |
ResUNet | 高斯白噪声 | 77.27 | 81.89 | 56.22 | 43.39 | 60.50 |
高斯色噪声 | 80.70 | 82.14 | 58.74 | 45.27 | 62.20 | |
脉冲噪声 | 76.60 | 82.50 | 23.00 | 9.50 | 38.30 | |
GC | 高斯白噪声 | 71.00 | 85.70 | 63.50 | 52.30 | 67.20 |
高斯色噪声 | 71.40 | 85.70 | 61.70 | 49.70 | 65.70 | |
脉冲噪声 | 54.30 | 74.50 | 20.10 | 7.30 | 34.00 | |
GN | 高斯白噪声 | 83.30 | 85.40 | 56.40 | 41.30 | 61.00 |
高斯色噪声 | 82.90 | 85.20 | 56.90 | 41.40 | 61.20 |
[1] | RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep Learning Convolutional Neural Networks for Radio Identification[J]. IEEE Communications Magazine, 2018, 56(9):146-152. |
[2] | LIU Z M. Recognition of Multi-Function Radars via Hierarchically Mining and Exploiting Pulse Group Patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 44(6):4659-4672. |
[3] | 孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6):1014-1031. |
SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of Radio Frequency Fingerprint Extraction in Specific Emitter Identification[J]. Journal of Radars, 2020, 9(6):1014-1031. | |
[4] | 刘明骞, 孟燕, 张卫东. 雷达辐射源识别的效能综合评估方法[J]. 西安电子科技大学学报, 2019, 46(6):1-8. |
LIU Mingqian, Meng Yan, ZHANG Weidong. Method for Comprehensive Evalution of Effectiveness of Radar Emitter Signals Recognition[J]. Journal of Xidian University, 2019, 46(6):1-8. | |
[5] | ANJANEYULU L, MURTHY N S, SARMA N. Radar Emitter Classification Using Self-Organising Neural Network Models[C]// 2008 International Conference on Recent Advances in Microwave Theory and Applications.Piscataway:IEEE, 2008:431-433. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:Unified,Real-Time Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:779-788. |
[7] |
FUAD M T H, FIME A A, SIKDER D, et al. Recent Advances in Deep Learning Techniques for Face Recognition[J]. IEEE Access, 2021, 9:99112-99142.
doi: 10.1109/ACCESS.2021.3096136 |
[8] | ZHANG Z, GEIGER J, POHJALAINEN J, et al. Deep Learning for Environmentally Robust Speech Recognition:An Overview of Recent Developments[J]. ACM Transactions on Intelligent Systems and Technology(TIST), 2018, 9(5):1-28. |
[9] |
ZHANG H, ZHOU F, WU Q, et al. A Novel Automatic Modulation Classification Scheme Based on Multi-Scale Networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 8(1):97-110.
doi: 10.1109/TCCN.2021.3091730 |
[10] |
HUANG S, JIANG Y, GAO Y, et al. Automatic Modulation Classification Using Contrastive Fully Convolutional Network[J]. IEEE Wireless Communications Letters, 2019, 8(4):1044-1047.
doi: 10.1109/LWC.5962382 |
[11] |
DU M, HE X, CAI X, et al. Balanced Neural Architecture Search and its Application in Specific Emitter Identification[J]. IEEE Transactions on Signal Processing, 2021, 69:5051-5065.
doi: 10.1109/TSP.2021.3107633 |
[12] | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]// International Conference on Engineering Applications of neural networks.Heidelberg:Springer, 2016:213-226. |
[13] | O’SHEA T J, WEST N. Radio Machine Learning Dataset Generation with GNU Radio[C]// Proceedings of the GNU Radio Conference.Boulder:GNU, 2016:1-6. |
[14] | HAUSER S C, HEADLEY W C, MICHAELS A J. Signal Detection Effects on Deep Neural Networks Utilizing Raw IQ for Modulation Classification[C]// MILCOM 2017-2017 IEEE Military Communications Conference(MILCOM).Piscataway:IEEE, 2017:121-127. |
[15] |
YILDIRIM A, KIRANYAZ S. 1D Convolutional Neural Networks Versus Automatic Classifiers for Known LPI Radar Signals under White Gaussian Noise[J]. IEEE Access, 2020, 8:180534-180543.
doi: 10.1109/Access.6287639 |
[16] |
O’SHEA T J, ROY T, CLANCY T C. Over-the-Air Deep Learning Based Radio Signal Classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):168-179.
doi: 10.1109/JSTSP.2018.2797022 |
[17] |
HUYNH T T, HUA C H, PHAM Q V, et al. MCNet:An Efficient CNN Architecture for Robust Automatic Modulation Classification[J]. IEEE Communications Letters, 2020, 24(4):811-815.
doi: 10.1109/COML.4234 |
[18] | SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:1-9. |
[19] |
ZHANG H, YUAN L, WU G, et al. Automatic Modulation Classification Using Involution Enabled Residual Networks[J]. IEEE Wireless Communications Letters, 2021, 10(11):2417-2420.
doi: 10.1109/LWC.2021.3102069 |
[20] | LI D, HU J, WANG C, et al. Involution:Inverting the Inherence of Convolution for Visual Recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:12321-12330. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778. |
[22] | WEST N E, O'SHEA T. Deep Architectures for Modulation Recognition[C]// 2017 IEEE International Symposium on Dynamic Spectrum Access Networks(DySPAN).Piscataway:IEEE, 2017:1-6. |
[23] |
DU M, ZHONG P, CAI X, et al. DNCNet:Deep Radar Signal Denoising and Recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4):3549-3562.
doi: 10.1109/TAES.2022.3153756 |
[24] |
HU S, PEI Y, LIANG P P, et al. Deep Neural Network for Robust Modulation Classification under Uncertain Noise Conditions[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1):564-577.
doi: 10.1109/TVT.25 |
[25] | 刘松涛, 赵帅, 汪慧阳. 雷达辐射源识别技术新进展[J]. 中国电子科学研究院学报, 2022, 17(6):523-533. |
LIU Songtao, ZHAO Shuai, WANG Huiyang. New Development on the Technology of Radar Emitter Identification[J]. Journal of CAEIT, 2022, 17(6):523-533. | |
[26] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11):139-144.
doi: 10.1145/3422622 |
[27] |
LIU D, WEN B, JIAO J, et al. Connecting Image Denoising and High-Level Vision Tasks via Deep Learning[J]. IEEE Transactions on Image Processing, 2020, 29:3695-3706.
doi: 10.1109/TIP.83 |
[28] | 赵集. Alpha稳定分布环境下自适应滤波算法研究[D]. 成都: 电子科技大学, 2020. |
[29] | 于浩洋, 尹良, 李书芳. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6):96-104. |
YU Haoyang, YIN Liang, LI Shufang, et al. Recognition Algorithm for the Little Sample Radar Modulation Signal Based on the Generative Adversarial Network[J]. Journal of Xidian University, 2021, 48(6):96-104. | |
[30] |
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539 |
[31] |
SUN J, XU G, REN W, et al. Radar Emitter Classification Based on Unidimensional Convolutional Neural Network[J]. IET Radar,Sonar & Navigation, 2018, 12(8):862-867.
doi: 10.1049/rsn2.v12.8 |
[32] | BROOKS T, MILDENHALL B, XUE T, et al. Unprocessing Images for Learned Raw Denoising[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11036-11045. |
[33] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks[C]// International Conference on Machine Learning(PMLR). New York: ACM, 2017:214-223. |
[34] | LUKE M, BEN P, DAVID P, et al. Unrolled Generative Adversarial Networks(2017)[J/OL].[2017-05-12]. https://arxiv.org/abs/1611.02163. |
[35] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved Training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:5769-5779. |
[36] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:618-626. |
[37] | RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2015:234-241. |
[38] |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a:A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162:94-114.
doi: 10.1016/j.isprsjprs.2020.01.013 |
[1] | LIAO Xiaomin, HAN Shuangli, ZHU Xuan, LIN Chushan, WANG Haipeng. Resource optimization algorithm for unmanned aerial vehicle jammer assisted cognitive covert communications [J]. Journal of Xidian University, 2023, 50(6): 75-83. |
[2] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[3] | DU Lixuhong,CHEN Jie,YANG Xiaoxue. Targeted password guessing scheme combined with GAN [J]. Journal of Xidian University, 2022, 49(3): 129-136. |
[4] | GU Zhaojun,LIU Tingting,SUI He. Latent feature reconstruction generative GAN model for ICS anomaly detection [J]. Journal of Xidian University, 2022, 49(2): 173-181. |
[5] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[6] | YU Haoyang,YIN Liang,LI Shufang,LV Shun. Recognition algorithm for the little sample radar modulation signal based on the generative adversarial network [J]. Journal of Xidian University, 2021, 48(6): 96-104. |
[7] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[8] | WANG Junjun,SUN Yue,LI Ying. Cloud removal method for the remote sensing image based on the GAN [J]. Journal of Xidian University, 2021, 48(5): 23-29. |
[9] | YANG Jingbo,ZHAO Qijun,LYU Zejun. Synthesis of the expression image and its application under the dimentional emotion model [J]. Journal of Xidian University, 2021, 48(5): 30-37. |
[10] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[11] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[12] | WEI Ziyu,YANG Xi,WANG Nannan,YANG Dong,GAO Xinbo. Reciprocal bi-directional generative adversarial network for cross-modal pedestrian re-identification [J]. Journal of Xidian University, 2021, 48(2): 205-212. |
[13] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[14] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[15] | LI Kunlun,ZHANG Lu,XU Hongke,SONG Huansheng. Waveletdomain dilated network for fast low-dose CT image reconstruction [J]. Journal of Xidian University, 2020, 47(4): 86-93. |
|