Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (6): 13-20.doi: 10.19665/j.issn1001-2400.20230705
• Special Issue on Elctromagnetic Space Security • Previous Articles Next Articles
LIU Gaogao1(),HUANG Dongjie1(),XI Xin1(),LI Hao2(),CAO Xuyuan2()
Received:
2023-01-24
Online:
2023-12-20
Published:
2024-01-22
CLC Number:
LIU Gaogao, HUANG Dongjie, XI Xin, LI Hao, CAO Xuyuan. Work pattern recognition method based on feature fusion[J].Journal of Xidian University, 2023, 50(6): 13-20.
"
工作模式 | 重频/kHz | 特点 | 信号变化样式 | 有无调制 |
---|---|---|---|---|
VS | 80~300 | 无速度模糊,用于检测高速移动的目标。有脉冲积累,固定载频,不会频繁变换重频,但为解决距离遮挡问题,会在发射一段脉冲后小范围地修改重频 | 脉组捷变 | 无 |
RWS | 10~40 | RWS有两种工作状态,在探测远距离的目标时,一般选择中重频工作模式,有脉冲积累,固定载频,通常采用重频组变的方式,以到达解距离模糊的目的 | 脉组捷变 | 无 |
TWS | 0.1~2.0 | 中低重频交替扫描,警戒雷达必备模式,常见的工作模式为长短脉冲结合,固定载频 | 脉组捷变 | 有 |
STT | 30~100 | 自动调整阵列天线的中心指向,从而对目标进行持续照射,波束驻留时间较长以增加积累效果,固定载频 | 固定重频 | 有 |
TAS | 10~40 | 该模式主要由许多子状态组成,如确认状态和跟踪状态。确认状态:频率捷变,无脉冲积累,会发射2~3组确认脉冲。跟踪状态:固定载频,有脉冲积累。当确认状态判定有目标时,会向目标区域发送一段跟踪脉冲 | 脉间/脉组捷变 | 有 |
"
信度函数 | 雷达参数 | 融合 | 识别结果 | |||
---|---|---|---|---|---|---|
占空比 | 重频/kHz | 脉宽/μs | ||||
m(H1) | 1.000 0 | 0.997 5 | 0.833 1 | 0.943 5 | H1 | |
m(θ1) | 0.000 0 | 0.002 5 | 0.166 9 | 0.056 5 | ||
m(H2) | 0.578 9 | 0.986 7 | 1.000 0 | 0.855 2 | H2 | |
m(θ2) | 0.421 1 | 0.013 3 | 0.000 0 | 0.144 8 | ||
信度值 | m(H3) | 0.750 0 | 0.666 7 | 0.996 6 | 0.804 4 | H3 |
m(θ3) | 0.250 0 | 0.333 3 | 0.003 4 | 0.195 6 | ||
m(H4) | 0.700 0 | 0.964 3 | 0.971 4 | 0.878 6 | H4 | |
m(θ4) | 0.300 0 | 0.035 7 | 0.028 6 | 0.121 4 | ||
m(H5) | 0.949 5 | 0.888 9 | 1.000 0 | 0.946 1 | H5 | |
m(θ5) | 0.050 5 | 0.111 1 | 0.000 0 | 0.053 9 |
"
侦察机 | 雷达参数 | 信度值 | 识别 结果 | |||||
---|---|---|---|---|---|---|---|---|
m(H1) | m(H2) | m(H3) | m(H4) | m(H5) | m(θ) | |||
E1 | 占空比 | 0.143 5 | 0.143 5 | 0.162 4 | 0.122 7 | 0.0607 | 0.367 2 | 不定 |
重频/kHz | 0.010 7 | 0.065 0 | 0.338 8 | 0.131 4 | 0.0081 | 0.446 0 | ||
脉宽/μs | 0.098 8 | 0.104 1 | 0.185 8 | 0.111 5 | 0.1055 | 0.394 3 | ||
融合 | 0.107 8 | 0.139 9 | 0.377 2 | 0.167 7 | 0.0695 | 0.137 9 | ||
E2 | 占空比 | 0.116 8 | 0.116 8 | 0.155 7 | 0.155 7 | 0.1085 | 0.346 5 | 不定 |
重频/kHz | 0.015 5 | 0.093 9 | 0.273 3 | 0.189 6 | 0.0116 | 0.416 1 | ||
脉宽/μs | 0.098 7 | 0.104 0 | 0.194 9 | 0.111 4 | 0.1054 | 0.385 6 | ||
融合 | 0.094 2 | 0.137 2 | 0.332 1 | 0.218 3 | 0.0913 | 0.126 9 | ||
E3 | 占空比 | 0.135 6 | 0.135 6 | 0.158 8 | 0.142 6 | 0.0706 | 0.356 8 | 不定 |
重频/kHz | 0.012 6 | 0.076 4 | 0.315 2 | 0.154 4 | 0.0095 | 0.431 9 | ||
脉宽/μs | 0.101 9 | 0.107 3 | 0.183 0 | 0.115 0 | 0.1088 | 0.384 0 | ||
融合 | 0.104 9 | 0.141 8 | 0.353 7 | 0.193 1 | 0.0751 | 0.131 4 |
[1] | 马小梦, 高梅国, 于默涵, 等. 智能对抗无人机的干扰组合序列生成算法研究(2023)[J/OL]. 西安电子科技大学学报.[2023-10-24]. https://doi.org/10.19665/j.issn1001-2400.20230903. |
[2] | 庞春逸. 机载雷达辐射源和工作模式识别[D]. 西安: 西安电子科技大学, 2022. |
[3] | 蔺诚毅, 徐伟. 基于无源侦察幅度的相控阵雷达工作模式仿真[J]. 电子技术与软件工程, 2021, 3:101-102. |
LIN Chengyi, XU Wei. Simulation of Operation Mode of Phased Array Radar Based on Passive Reconnaissance Amplitude[J]. Electronic Technology and Software Engineering, 2021, 3:101-102. | |
[4] | 翟龙军, 但波, 宋伟健, 等. 基于聚类分析方法的多功能雷达工作模式识别[J]. 舰船电子工程, 2022, 42(4):86-88. |
ZHAI Longjun, DAN Bo, SONG Weijian, et al. Multi-Function Radar Operating Pattern Recognition Based on Cluster Analysis[J]. Ship Electronic Engineering, 2022, 42(4):86-88. | |
[5] | 罗健, 仇洪冰, 周陬, 等. 基于SOM聚类平滑图信号生成的MFR工作模式识别方法[J]. 桂林电子科技大学学报, 2023, 43(2):120-127. |
LUO Jian, QIU Hongbing, ZHOU Chou, et al. MFR Working Pattern Recognition Method Based on SOM Cluster Smooth Graph Signal Generation[J]. Journal of Guilin University of Electronic Technology of China, 2023, 43(2):120-127. | |
[6] |
利强, 张伟, 金秋园, 等. 基于知识原型网络的小样本多功能雷达工作模式识别[J]. 电子学报, 2022, 50(6):1344- 1350.
doi: 10.12263/DZXB.20210932 |
LI Qiang, ZHANG Wei, JIN Qiuyuan, et al. Small Sample Multi-Function Radar Mode Recognition Based on Knowledge Prototype Network[J]. Acta Electronica Sinica, 2022, 50(6):1344-1350.
doi: 10.12263/DZXB.20210932 |
|
[7] | 刘俊江. 机载火控雷达工作模式识别[J]. 电子测量技术, 2016, 39(2):131-133. |
LIU Junjiang. Working Pattern Recognition of Airborne Fire Control Radar[J]. Electronic Measurement Technology, 2016, 39(2):131-133. | |
[8] | ZHANG Y, ZHANG C, HUO W, et al. Operation Mode Recognition of Airborne Radar Based on Multi-Feature Fusion RS-ConvNet[C]// IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.Piscataway:IEEE, 2022:2686-2689. |
[9] | WANG W, WANG Y. A Parameter-Optimized SLS-TSVM Method for Working Modes Recognition of Airborne Fire Control Radar[C]// 2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).Piscataway:IEEE, 2020:948-953. |
[10] | 王玉冰, 程嗣怡, 周一鹏, 等. 基于DS证据理论的机载火控雷达空空工作模式判定[J]. 现代雷达, 2017, 39(5):79-84. |
WANG Yubing, CHENG Siyi, ZHOU Yipeng, et al. Air-to-Air Operating Mode Determination of Airborne Fire Control Radar Based on DS Evidence Theory[J]. Modern Radar, 2017, 39(5):79-84. | |
[11] | 王星, 王志鹏, 呙鹏程, 等. 应用D-S证据理论的雷达工作模式特征层融合识别[J]. 空军工程大学学报(自然科学版), 2016, 17(4):35-40. |
WANG Xing, WANG Zhipeng, GUO Pengcheng, et al. Radar Operating Mode Feature Layer Fusion Recognition Using D-S Evidence Theory[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(4):35-40. | |
[12] | 李楠, 曲长文, 平殿发, 等. 基于分布式传感器信息融合的辐射源识别[J]. 控制与决策, 2010, 25(12):1793-1798. |
LI Nan, QU Changwen, PING Dianfa, et al. Radiation Source Identification Based on Distributed Sensor Information Fusion[J]. Control and Decision, 2010, 25(12):1793-1798. | |
[13] | 朱大奇, 于盛林. 基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用[J]. 电子学报, 2002, 30(2):221-223. |
ZHU Daqi, YU Shenglin. Data Fusion Algorithm Based on D-S Evidence Theory and Its Application in Circuit Fault Diagnosis[J]. Acta Electrica Sinica, 2002, 30(2):221-223. |
[1] | XIONG Jingwei, PAN Jifei, BI Daping, DU Mingyang. Multi-scale convolutional attention network for radar behavior recognition [J]. Journal of Xidian University, 2023, 50(6): 62-74. |
[2] | WU Xuzi;LIU Zheng;XIE Rong. New method for range-ambiguous clutter suppression in non-side-looking airborne radar [J]. Journal of Xidian University, 2017, 44(2): 1-7. |
[3] | FENG Weike;ZHANG Yongshun;ZHANG Dan. Novel angle Doppler compensation method [J]. J4, 2015, 42(6): 158-163. |
[4] | XIE Hu;FENG Dazheng;YU Hongbo;YUAN Mingdong;NIE Weike. Fast space-time adaptive processing method by using the sparse representation [J]. J4, 2015, 42(5): 55-62. |
[5] | ZHOU Yan;FENG Dazheng;ZHU Guohui. Clutter pre-filtered method applied in bistatic airborne radar [J]. J4, 2015, 42(5): 68-74. |
[6] | XIANG Pingye;FENG Dazheng;ZHOU Yan;ZHU Guohui. Three dimensional space-time open-loop clutter block canceller applied to the airborne phased array radar [J]. J4, 2015, 42(3): 26-32. |
[7] | WU Yifeng;WANG Tong;WU Jianxin. Moving target detection for airborne radar under repeater jamming environment [J]. J4, 2014, 41(6): 51-56+154. |
[8] | Lü Hui;FENG Dazheng;HE Jie;XIANG Cong. Localized reduced-dimension clutter suppression method for the airborne MIMO radar [J]. J4, 2011, 38(2): 88-92. |
[9] | HE Jie;FENG Dazheng;Lü Hui;CAO Yang. Modified space-time multiple-beam approach for the airborne radar [J]. J4, 2011, 38(1): 131-135. |
[10] | JIANG Hui;LIAO Gui-sheng. Compensation of the clutter spectrum for a bistatic airborne radar [J]. J4, 2010, 37(1): 68-72+95. |
[11] | LI Ming;LIAO Gui-sheng;YUAN Xiao-yi;WEN Jun. Analysis of the dependence of the vertical baseline bistatic airborne radar clutter spectrum on range [J]. J4, 2009, 36(6): 979-984. |
[12] | HU Guo-ping1,2;ZHANG Shou-hong1. Study of target recognition based on multi-sensor cooperating with exploration [J]. J4, 2009, 36(3): 443-447. |
[13] |
LI Xiao-ming;FENG Da-zheng;LIU Hong-wei;LUO Ding.
Space-time two-dimensional pre-filtering for clutter suppression in the phased array airborne radar [J]. J4, 2008, 35(2): 216-222. |
[14] |
WEN Hao-yu;REN Xiao-long;XU Guo-hua.
A D-S evidence theory based trust model for the P2P network [J]. J4, 2005, 32(3): 400-402. |
|