Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (4): 149-157.doi: 10.19665/j.issn1001-2400.2020.04.020
Received:
2019-12-23
Online:
2020-08-20
Published:
2020-08-14
Contact:
Jun YANG
E-mail:1442342449@qq.com;yangj@mail.lzjtu.cn
CLC Number:
DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion[J].Journal of Xidian University, 2020, 47(4): 149-157.
[1] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems: 1. Vancouver: Neural Information Processing Systems Foundation, 2012: 1097-1105. |
[2] | 张金刚, 方圆, 袁豪, 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155. |
ZHANG Jingang, FANG Yuan, YUAN Hao, et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155. | |
[3] | 朱苏雅, 杜建超, 李云松, 等. 采用U-Net 卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,6(4 ): 35-42. |
ZHU Suya, Du Jianchao, LI Yunsong, et al. Method for Bridge Crack Detection Based on the U-Net Convolutional Network[J]. Journal of Xidian University, 2019,6(4):35-42. | |
[4] | 刘道华, 崔玉爽, 赵岩松, 等. 一种改进卷积神经网络的教学图像检索方法[J]. 西安电子科技大学学报, 2019(3):52-58. |
LIU Daohua, CUI Yushuang, ZHAO Yansong, et al. Method for Retrieving the Teaching Image Based on the Improved Convolutional Neural Networks[J]. Journal of Xidian University, 2019(3):52-58. | |
[5] | WU Z, SONG S, KHOSLA A, et al. 3D Shapenets: a Deep Representation for Volumetric Shapes[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1912-1920. |
[6] | MATURANA D, SCHERER S. Voxnet: A 3D Convolutional Neural Network for Real-time Object Recognition[C]// Proceedings of the 2015 IEEE International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. |
[7] | 杨军, 王亦民. 基于深度卷积神经网络的三维模型识别[J]. 重庆邮电大学学报, 2019,31(2):253-260. |
YANG Jun, WANG Yimin. 3D Model Recognition and Classification Based on Deep Convolution Neural Network[J]. Journal of Chongqing University of Posts and Telecommunications, 2019,31(2):253-260. | |
[8] | 杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019,39(4):314-324. |
YANG Jun, WANG Shun, ZHOU Peng. 3D Model Recognition and Classification Based on Deep Voxel Convolution Neural Network[J]. Acta Optica Sinica, 2019,39(4):314-324. | |
[9] | RIEGLER G, ULUSOY A O, GEIGER A. Octnet: Learning Deep 3D Representations at High Resolutions[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6620-6629. |
[10] | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953. |
[11] | FENG Y, ZHANG Z, ZHAO X, et al. GVCNN: Group-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 264-272. |
[12] | KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D Shape Segmentation with Projective Convolutional Networks[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6630-6639. |
[13] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]// Proceedings of the 2015 3rd International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2015: 1409-1423. |
[14] | HUANG H, KALOGERAKIS E, CHAUDHURI S, et al. Learning Local Shape Descriptors from Part Correspondences with Multi View Convolutional Networks[J]. ACM Transactions on Graphics, 2018,37(1):6-20. |
[15] | QI C R, SU H, MO K, et al. Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. |
[16] | QI C R, YI L, SU H, et al. Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2017: 5100-5109. |
[17] | WANG Y, SUN Y, LIU Z, et al. Dynamic Graph CNN for Learning on Point Clouds[J]. ACM Transactions on Graphics, 2019,38(5):146-160. |
[18] | KLOKOV R, LEMPITSKY V. Escape from Cells: Deep Kd-networks for the Recognition of 3D Point Cloud Models[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 863-872. |
[19] | LI Y, BU R, SUN M, et al. Pointcnn: Convolution on X-transformed Points[C]// Proceedings of the 2018 International Conference on Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2018: 820-830. |
[20] | ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an Extremely Efficient Convolutional Neural Network for Mobile Devices[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 6848-6856. |
[21] | CHEN C, FRAGONARA L Z, TSOURDOS A. Go Wider: An Efficient Neural Network for Point Cloud Analysis via Group Convolutions[J/OL]. [2019-09-23]. https: //arxiv.org/pdf/1909.10431.pdf. |
[22] | LANDOLA F, MOSKEWICZ M, KARAYEV S, et al. Densenet: Implementing Efficient Convnet Descriptor Pyramids[J/OL]. [2014-04-07]. https: //arxiv.org/pdf/1404.1869.pdf. |
[23] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778. |
[24] | YI L, KIM V, CEYLAN D, et al. A Scalable Active Framework for Region Annotation in 3D Shape Collections[J]. ACM Transactions on Graphics, 2016,35(6):1-12. |
[25] | ARMENI I, SENER O, ZAMIR A R, et al. 3D Semantic Parsing of Large-scale Indoor Spaces[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1534-1543. |
[26] | ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 716-724. |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[11] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[12] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[13] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[14] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
[15] | HU Jianwei,ZHAO Wei,CUI Yanpeng,CUI Junjie. PHP code vulnerability mining technology based on theimproved ASTNN [J]. Journal of Xidian University, 2020, 47(6): 164-173. |
|