[1] |
ZEN R I M, WIDYANTO M R, KISWANTO G, et al. Dangerous Smoke Classification Using Mathematical Model of Meaning[J]. Procedia Engineering, 2013,62:963-971.
doi: 10.1016/j.proeng.2013.08.149
|
[2] |
KO B C, PARK J O, NAM J Y. Spatiotemporal Bag-of-features for Early Wildfire Smoke Detection[J]. Image and Vision Computing, 2013,31(10):786-795.
doi: 10.1016/j.imavis.2013.08.001
|
[3] |
TIAN H, LI W, OGUNBONA P, et al. Smoke Detection in Videos Using Non-redundant Local Binary Pattern-based Features[C]// Proceedings of the 2011 IEEE International Workshop on Multimedia Signal Processing. Washington: IEEE Computer Society, 2011: 6093844.
|
[4] |
TAO C, ZHANG J, WANG P. Smoke Detection Based on Deep Convolutional Neural Networks[C]// Proceedings of the 2016 International Conference on Industrial Informatics-computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway: IEEE, 2016: 150-153.
|
[5] |
YIN Z, WAN B, YUAN F, et al. A Deep Normalization and Convolutional Neural Network for Image Smoke Detection[J]. IEEE Access, 2017,5:18429-18438.
doi: 10.1109/ACCESS.2017.2747399
|
[6] |
ZHANG Q X, LIN G H, ZHANG Y M, et al. Wildland Forest Fire Smoke Detection Based on Faster R-CNN Using Synthetic Smoke Images[C]// Proceedings of the 2017 8th International Conference on Fire Science and Fire Protection Engineering. Oxford: Elsevier Ltd, 2018: 441-446.
|
[7] |
REDMON J, FARHADI A. Yolov3: An Incremental Improvement[J/OL]. [2019-12-16].https://arxiv.org/pdf/1804.02767.pdf.
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-time Object Detection[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 779-788.
|
[9] |
REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
|
[10] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[11] |
HU J, SHEN L, SNU G. Squeeze-and-excitation Networks[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7132-7141.
|
[12] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression[C]// Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2019: 658-666.
|
[13] |
赵敏, 张为, 王鑫, 等. 时空背景模型下结合多种纹理特征的烟雾检测[J]. 西安交通大学学报, 2018,52(8):72-78.
|
|
ZHAO Min, ZHANG Wei, WANG Xin, et al. Smoke Detection via Multi-texture Feature Exploration with Spatio-temporal Background Model[J]. Journal of Xi’an Jiaotong University, 2018,52(8):72-78.
|
[14] |
BESBES O, BENAZZA-BENYAHIA A. A Novel Video-based Smoke Detection Method Based on Color Invariants[C]// Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2016: 1911-1915.
|
[15] |
汪梓艺, 苏育挺, 刘艳艳, 等. 一种改进DeeplabV3网络的烟雾分割算法[J]. 西安电子科技大学学报, 2019,46(6):52-59.
|
|
WANG Ziyi, SU Yuting, LIU Yanyan, et al. Algorithm for Segmentation of Smoke Using the Improved DeeplabV3 Network[J]. Journal of Xidian University, 2019,46(6):52-59.
|