[1]Gallager R G. Low Density Darity Check Codes[J]. IEEE Trans on Information Theory, 1962, 8(1): 21-28.
[2]MacKay D J C, Neal R M. Near Shannon Limit Performance of Low Density Parity Check Codes[J]. IEE Electron Letters, 1996, 32(18): 1645-1646.
[3]Richardson T J, Urbanke R L. The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding[J]. IEEE Trans on Information Theory, 2001, 47(2): 599-618.
[4]Davey M C, MacKay D J C. Low-Density Parity Check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165-167.
[5]MacKay D J C, Davey M C. Evaluation of Gallager Godes for Short Block Length and High Rate Application[C]//Proc IMA International Conference on Mathematic and Its Applications: Codes, Systems and Graphincal Models. Minnesota: IEEE, 2000: 113-130.
[6]Hu X Y, Eleftheriou E. Binary Representation of Cycle Tanner-Graph GF(2b) Codes[C]//Proc ICC. Paris: IEEE, 2004: 528-532.
[7]Poulliat C, Fossorier M, Declercq D. Design of Regular (2,dc)-LDPC Codes over GF(q) Using Their Binary Images[J]. IEEE Trans on Communication, 2008, 56(2): 1626-1635.
[8]Li Z, Chen L, Zeng L, et al. Efficient Encoding of Quasi-Cyclic Low Density Parity Check Codes[J]. IEEE Trans on Communication, 2006, 53(4): 71-81.
[9]Andrews K, Dolinar S, Thorpe J. Encoders for Block-Circulant LDPC Codes[C]//Proc IEEE International Symposium on Information Theory. Adelaide: IEEE, 2005: 2300-2304.
[10]Perez J M, Andrews K. Low-Density Parity-Check Code Design Techniques to Simplify Encoding[J]. IPN Progress Report, 2007: 42-171.
[11]Hu X Y, Eleftheriou E, Arnold D M. Regular and Irregular Progressive Edge-Growth Tanner Graphs[J]. IEEE Trans on Information Theory, 2005, 51(1): 386-398. |