[1] Swaminathan M, Engin A E. 芯片及系统的电源完整性建模与设计[M]. 李玉山, 张木水, 译. 北京: 电子工业出版社, 2009: 163-188.
[2] 丁同浩, 李玉山, 张伟, 等. 非理想互联的传输线模型及串扰分析[J]. 西安电子科技大学学报, 2010, 37(4): 694-699.
Ding Tonghao, Li Yushan, Zhang Wei, et al. Transmission Line Model and Crosstalk Analysis of Non-ideal Interconnect[J]. Journal of Xidian University, 2010, 37(4): 694-699.
[3] 尚玉玲, 李玉山. 面向测试的SOC核间互联网络简约算法[J]. 西安电子科技大学学报, 2009, 36(5): 871-876.
Shang Yuling, Li Yushan. Study of the Reduction Algorithm of SOC Inter-core Interconnects for Tesing[J]. Journal of Xidian University, 2009, 36(5): 871-876.
[4] Gustavsen B, Semlyen A. Rational Approximation of Frequency Domain Responses by Vector Fitting[J]. IEEE Trans on Power Delivery, 1999, 14(3): 1052-1061.
[5] Coelho C P, Phillips J, Silveira L M. A Convex Programming Approach for Generating Guaranteed Passive Approximations to Tabulated Frequency-Data[J]. IEEE Trans on Computer-Aided Design of Integrated Circuits and System, 2004, 23(2): 293-301.
[6] Gustavsen B. Fast Passivity Enforcement for S-parameter Models by Perturbation of Residue Matrix Eigenvalues[J]. IEEE Trans on Advanced Packaging, 2010, 33(1): 257-265.
[7] Gao Song, Li Yushan, Zhang Mushui. An Efficient Algebraic Method for the Passivity Enforcement of Macromodels[J]. IEEE Trans on Microwave Theory and Techniques, 2010, 58(7): 1830-1839.
[8] Grivet-Talocia S, Ubolli A. Passivity Enforcement with Relative Error Control[J]. IEEE Trans on Microwave Theory and Techniques, 2007, 55(11): 374-383.
[9] Grivet-Talocia S. On Passivity Characterization of Symmetric Rational Macromodels[J]. IEEE Trans on Microwave Theory and Techniques, 2010, 58(5): 1238-1247.
[10] Grivet-Talocia S, Ubolli A. A Comparative Study of Passivity Enforcement Schemes for Linear Lumped Macromodels[J]. IEEE Trans on Advanced Packaging, 2008, 31(4): 673-683.
[11] Willems J C. Dissipative Dynamical Systems Part II: Linear Systems with Quadratic Supply Rates[J]. Archive for Rational Mechcanics and Analysis, 1972, 45(5): 352-393.
[12] Konstantinov M, Gu Dawei, Mehrmann V. Perturbation Theory for Matrix Equations[M]. New Jersey: Elsevier Science, 2003: 167-252. |