[1] Bertalmio M, Sapiro G, Caselles V, et al. Image Inpainting[C]//Proc of the ACM SIGGRAPH. New Orleans: ACM Press, 2000: 417-424.
[2] Criminisi A, Perez P, Toyama K. Region Filling and Object Removal by Exemplar-based Image Inpainting[J]. IEEE Trans on Image Processing, 2004, 13(9): 1200-1212.
[3] Wu Jiying, Ruan Qiuqi. An Gaoyun. Exemplar-based Image Completion Model Employing PDE Corrections[J]. Informatica, 2010, 21(2): 259-276.
[4] Xu Zongben, Sun Jian. Image Inpainting by Patch Propagation Using Patch Sparsity[J]. IEEE Trans on Image Processing, 2010, 19(5): 1153-1165.
[5] Masnou S. Disocclusion: a Variational Approach Using Level Lines[J]. IEEE Trans on Image Processing, 2002, 11: 68-76.
[6] Levin A, Zomet A, Weiss Y. Learning How to Inpait from Global Image Statistics[C]//IEEE International Conference on Computer Vision. France: IEEE, 2003: 305-312.
[7] 郝岩, 冯象初, 许建楼. 一种非局部扩散的图像修复模型[J]. 西安电子科技大学学报, 2010, 37(5): 825-828.
Hao Yan, Feng Xiangchu, Xu Jianlou. Image Inpainting Model of Nonlocal Diffusion[J]. Journal of Xidian University, 2010, 37(5): 825-828.
[8] 张伟斌, 冯象初, 王卫卫. 带Besov忠诚项的图像去噪变分模型[J]. 西安电子科技大学学报, 2011, 38(3): 155-158.
Zhang Weibin, Feng Xiangchu, Wang Weiwei. Variational Model with the Besov Fidelity Term for Image Denoising[J]. Journal of Xidian University, 2011, 38(3): 155-158.
[9] Rudin L, Osher S, Fatemi E. Nonlinear Total Veriation Based Noise Removal Algorithms [J]. Physica D, 1992, 60: 259-268.
[10] Chan T, Shen J. Mathematical Models of Local Non-texture Inpaintings[J]. SIAM Journal on Applied Math, 2002, 62(3): 1019-1043.
[11] Tai Xuecheng, Osher S, Holm R. Image Inpainting Using a TV-Stokes Equation[C]//Image Processing Based on Partial Differential Equations. Heidelberg: Springer, 2007: 3-22.
[12] Bredies K, Kunisch K, Pock T. Total Generalized Variation[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 492-526.
[13] Bredies K, Valkonen T. Inverse Problems with Second-order Total Generalized Variation Constraints[C/OL]. [2011-10-20]. http://www.uni-graz.at/~bredies/papers/SampTA2011.pdf.
[14] Pock T, Zebedin L, Bischof H. TGV-Fusion[J]. Lecture Notes in Computer Science, 2011, 6570: 245-258.
[15] Knoll F, Bredies K, Pock T, et al. Second Order Total Generalized Variation(TGV) for MRI[J]. Magnetic Resonance in Medicine, 2011, 65(2): 480-491.
[16] Chambolle A, Pock T. A First-order Primal-dual Algorithm for Convex Problems with Applications to Imaging[J]. Journal Mathematical Imaging Vision, 2011, 40(1): 120-145. |