[1] Rudin L, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physica D, 1992, 60(1-4): 259-268.
[2] Aubert G, Aujol J. A Variational Approach to Remove Multiplicative Noise [J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946.
[3] Shi B, Huang L. A Model Based on the Fourth-Order PDE for Multiplicative Noise Removal [J]. Journal of Hunan University (Natural Science), 2011, 38(7): 83-86.
[4] 王旭东, 冯象初, 霍雷刚. 去除乘性噪声的重加权各向异性全变差模型 [J]. 自动化学报, 2012, 38(3): 444-451.
Wang Xudong, Feng Xiangchu, Huo Leigang. Iteratively Reweighted Anisotropic-TV Based Multiplicative Noise Removal Model [J]. Acta Automatic Sinica, 2012, 38(3): 444-451.
[5] 姚晓莉, 冯象初, 李亚峰. 去除乘性噪声的主成分分析算法 [J]. 光子学报, 2011, 40(7): 1031-1035.
Yao Xiaoli, Feng Xiangchu, Li Yafeng. Principal Component Analysis Method for Muitiplicative Noise Removal [J]. Acta Photonica Sinica, 2011, 40(7): 1031-1035.
[6] Bai J, Feng Xiangchu. Image Denoising and Decomposition Using Non-Convex Functional [J]. Chinese Journal of Electronics, 2012, 21(1): 102-106.
[7] Janev M, Pilipovic S, Atanackovic T, et al. Fully Fractional Anisotropic Diffusion for Image Denoising [J]. Mathematical and Computer Modeling, 2011, 54(1): 729-741.
[8] Tadmar E, Athavale P. Multiscale Image Representation Using Integral-Differential Equations [J]. Inverse Problems and Imaging, 2009, 3(4): 693-710.
[9] Athavale P, Tadmar E. Integro-differential Equation Based on (BV,L1) Image Decomposition [J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 300-312.
[10] Joesph A, Marcucilli. A Review of Some Inverse Scale Space Methods for Image Restoration [D]. San Diego: A Thesis Presented to the Faculty of San Diego State University, 2012.
[11] Chen B, Cai J, Chen W, Li Y. A Multiplicative Noise Removal Approach Based on Partial Differential Equation Model [DB/OL]. [2012-09-11]. http://www.hindawi.com/journals/mpe/2012/242043/. |