[1] Candes E J, Donoho D L. Curvelets: a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]. Nashville: Vanderbilt University Press, 2000: 105-120.
[2] Candes E J, Demanet L, Donoho D L, et al. Fast Discrete Curvelet Transforms[J]. Multiscal Modeling and Simulation, 2006, 5(3): 861-899.
[3] StarckJ L, Candès E J, Donoho D L.The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.
[4] Ma J, Plonka G. A Review of Curvelets and Recent Applications[J]. IEEE Signal Processing Magazine, 2010, 27(2): 118-133.
[5] Daubechies I, Defrise M, De Mol C. An Iterative Thresholding Algorithm for Linear Inverse Problems[J]. Communications on Pure & Applied Mathematics, 2004, 57(11): 1413-1457.
[6] Ma Jianwei. Improved Iterative Curvelet Thresholding for Compressed Sensing and Measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(1): 126-136.
[7] Perona P, Malik J. Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Pattern Analysis and Machine Intelligence, 1990, 12: 629-639.
[8] Brox T, Weickert J, Burgeth B, et al. Nonlinear Structure Tensors[J]. Image and Vision Computing, 2006, 24(1): 41-55.
[9] Ma Jianwei, Gerlind P. Combined Curvelet Shrinkage and Nonlinear Anisotropic Diffusion[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2198-2206.
[10] Weisstein E W. Chi-Squared Distribution[EB/OL]. [2013-08-04]. http://mathworld.wolfram.com/Chi-SquaredDistribution.html. |