[1] Pevny T, Fridrich J. Benchmarking for Steganography [C]//Lecture Notes in Computer Science: 5284. Berlin: Springer, 2008: 251-267.
[2] Cachin C. An information-theoretic Model For Steganography [C]//Lecture Notes in Computer Science: 1525. Heidelberg: Springer, 1998: 306-318.
[3] Haussler D, Opper M. Mutual Information, Metric Entropy and Cumulative Relative Entropy Risk [J]. The Annals of Statistics, 1997, 25(6): 2451-2492.
[4] Gretton A, Borgwardt K M, Rasch M, et al. A Kernel Method for the Two-sample-problem [C]//Proceedings of the Conference on Advances in Neural Information Processing Systems: 19. Canada: Neural Information Proceeding System Foundation, 2007: 513-520.
[5] Chang C C, Lin C J. LIBSVM: a Library for Support Vector Machines [J]. Transactions on Intelligent Systems and Technology, 2011, 2(3): 171-197.
[6] Bas P, Filler T, Pevny T. Break Our Steganographic System: The Ins and Outs of Organizing BOSS [C]//Lecture Notes in Computer Science: 6958. Berlin: Springer, 2011: 59-70.
[7] Westfield A. F5—a Steganographic Algrithm High Capacity Despite Better Steganalysis [C]//Lecture Notes in Computer Science: 2137. Berlin: Springer, 2001: 289-302.
[8] Latham A. JPHIDE and JPSEEK [CP/OL]. [2014-01-12]. http://linux01.gwdg.de/~alatham/stego.html.
[9] Upham D. JSteg [CP/OL]. [2014-01-12]. http://zooid.org/~paul/crypto/jsteg/.
[10] Sallee P. Model-based Steganography [C]//Lecture Notes in Computer Science: 2939. Berlin: Springer, 2004: 154-167.
[11] Kim Y, Duric Z, Richards D. Modified Matrix Encoding Technique for Minimal Distortion Steganography [C]//Lecture Notes in Computer Science: 4437. Berlin: Springer, 2007: 314-327.
[12] Provos N. Defending Against Statistical Steganalysis [C]//Proceedings of the 10th USENIX Security Symposium: 10. Berkeley: USENIX Association , 2001: 323-335.
[13] Fridrich J, Goljan M, Soukal D. Perturbed Quantization Steganography [J]. Multimedia Systems, 2005, 11(2): 98-107.
[14] Hetzl S, Mutzel P. A Graph Theoretic Approach to Steganography [C]//Lecture Notes in Computer Science: 3677. Berlin: Springer, 2005: 119-128.
[15] Filler T, Judas J, Fridrich J. Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935.
[16] Sachnev V, Kim H J, Zhang R. Less Detectable JPEG Steganography Method Based on Heuristic Optimization and BCH Syndrome Coding [C]//Proceedings of the 11th ACM Workshop on Multimedia and Security. New York: ACM, 2009: 131-140.
[17] Chen B, Wornell G W. Quantization Index Modulation Methods for Digital Watermarking and Information Embedding of Multimedia [J]. Journal of VLSI Signal Processing, 2001, 27(1-2): 7-33.
[18] Solanki K, Sarkar A, Manjunath B S. YASS: Yet Another Steganographic Scheme That Resists Blind Steganalysis [C]//Lecture Notes in Computer Science: 4567. Berlin: Springer, 2007: 16-31.
[19] Fridrich J, Kodovsky J. Rich Models for Steganalysis of Digital Images [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882.
[20] Kodovsky J, Fridrich J. Steganalysis of JPEG Images Using Rich Models [C]//Proceedings of SPIE: 8303. Bellingham: SPIE, 2012: 1-13.
[21] Kodovsky J, Fridrich J. Steganalysis in High Dimensions: Fusing Classifiers Built on Random Subspaces [C]//Proceedings of SPIE: 7880. Bellingham: SPIE, 2011: 1-13.
[22] Kodovsky J, Fridrich J, Holub V. Ensemble Classifiers for Steganalysis of Digital Media [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432-444.
[23] Pevny T, Bas P, Fridrich J. Steganalysis by Subtractive Pixel Adjacency Matrix [J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215-224. |