[1] SU Y, GUO Q, XUE B, et al. Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data[J]. Remote Sensing of Environment, 2016, 173: 187-199.
[2] OZLEM K, GARCIA-RUBIA J M, NGHIA T, et al. Detection of Moving Human Micro-Doppler Signature in Forest Environments with Swaying Tree Components by Wind[J]. Radio Science, 2015, 50: 238-248.
[3] RASHIDI-RANJBAR E, DEHMOLLAIAN M. Target above Random Rough Surface Scattering Using a Parallelized IPO Accelerated by MLFMM[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12: 1481-1485.
[4] NASHASHIBI A, ULABY F T, SARABANDI K. Measurement and Modeling of the Millimeter-wave Backscatter Response of Soil Surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 561-572.
[5] OH Y, SARABANDI K, ULABY F T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 370-381.
[6] 张连波, 郭立新, 苟雪银, 等. 三层粗糙面电磁散射的矩量法研究[J]. 西安电子科技大学学报, 2013, 40(6): 147-154.
ZHANG Lianbo, GUO Lixin, GOU Xueyin, et al. Method of Moment Investigation on Electromagnetic Scattering from the Three-layered Rough Interfaces[J]. Journal of Xidian University, 2013, 40(6): 147-154.
[7] FUNG A K. Microwave Scattering and Emission Models and Their Applications [M]. Norwood: Artech House, 1994.
[8] LI E S, SARABANDI K. Low Grazing Incidence Millimeter-wave Scattering Models and Measurements for Various Road Surfaces[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(5): 851-861.
[9] NASHASHIBI A Y, SARABANDI K, AL-ZAID F A, et al. An Empirical Model of Volume Scattering from Dry Sand-covered Surfaces at Millimeter-wave Frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3673-3682.
[10] 郑帆, 郭立新, 刘伟. 风积新月形沙丘的电磁散射特性分析[J]. 西安电子科技大学学报, 2013, 40(6): 132-139.
ZHENG Fan, GUO Lixin, LIU Wei. Analysis of Electromagetic Scattering from the Wind-blown Barchan [J]. Journal of Xidian University, 2013, 40(6): 132-139.
[11] LIEVENS H, VERHOEST N E C. On the Retrieval of Soil Moisture in Wheat Fields from L-band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 740-744.
[12] DUBOIS P C, van ZYL J, ENGMAN T. Measuring Soil Moisture with Imaging Radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915-926.
[13] SHI J, WANG J, HSU A Y, et al. Estimation of Bare Soil Moisture and Surface Roughness Parameters Using L-band SAR Image Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1254-1266.
[14] ZRIBI M, GORRAB A, BAGHDADI N. A New Soil Roughness Parameter for the Modelling of Radar Backscattering over Bare Soil[J]. Remote Sensing of Environment, 2014, 152: 62-73.
[15] ULABY F T, DONSON M C. Handbook of Radar Scattering Statistics for Terrain[M]. Norwood: Artech House, 1989.
[16] ULABY F T. Vegetation Clutter Model[J]. IEEE Transactions on Antennas and Propagation, 1980, 28(4): 538-545.
[17] CHEN K L, CHEN K S, LI Z L, et al. Extension and Validation of an Advanced Integral Equation Model for Bistatic Scattering from Rough Surfaces [J]. Progress In Electromagnetics Research, 2015, 152: 59-76.
[18] HAFFNER S, PEREIRA L A, PEREIRA L F A. A Method for Optimization of Five-phase Induction Machines Based on Genetic Algorithms[J]. Journal of Control Automation & Electrical Systems, 2016, 26(5): 521-534. |