[1]Daubechies I, Defrise M, De Mol C. An Iterative Thresholding Algorithm for Linear Inverse Problems[J]. Communications on Pure & Applied Mathematics, 2004, 57(11): 1413-1457.
[2]Bredies K, Lorenz D A. Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints[J]. SIAM Journal on Scientific Computing, 2008, 30(2): 657-683.
[3]Donoho D L. Orthonormal Ridgelet and Linear Singularities[J]. SIAM Journal on Mathematical Analysis, 2000, 31(5): 1062-1099.
[4]Candes E J, Donoho D L. Curvelets: a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]//Curves and Surfaces. Nashville: Vanderbilt University Press, 2000:105-120.
[5]Candes E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with C2 Singularities[J]. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.
[6]Candes E J, Demanet L, Donoho D L, et al. Fast Discrete Curvelet Transforms[J]. SIAM Multiscal Modeling and Simulation, 2006, 5(3): 861-899.
[7]Pennec E L, Mallat S. Sparse Geometric Image Representation with Bandelets[J]. IEEE Trans on Image Processing, 2005,14(4): 423-438.
[8]Demanet L, Ying L X. Wave Atoms and Sparsity of Oscillatory Patterns[J]. Applied and Computational Harmonic Analysis, 2007, 23(3): 368-387.
[9]Plonka G, Ma J W. Nonlinear Regularized Reaction-diffusion Filters for Denoising of Images with Textures[J]. IEEE Trans on Image Processing, 2008, 17(8): 1283-1294.
[10]江玲玲, 殷海青, 冯象初. 一种结合稀疏表示和投影正则化的图像分解方法[J]. 西安电子科技大学学报, 2007, 34(5): 800-804.
Jiang Lingling, Yin Haiqing, Feng Xiangchu. Image Decomposition Based on Sparse Representations and a Projected Regularization Method[J]. Journal of Xidian University, 2007, 34(5): 800-804.
[11]Borup L, Nielsen M. Frame Decomposition of Decomposition Spaces[J]. Journal of Fourier Analysis and Applications, 2007,13(1): 39-70. |