[1] Wang Q, Peng J, Kan H, et al. Construction of Cryptographically Significant Boolean Functions Using Primitive Polynomials[J]. IEEE Trans on Inf Theory, 2010, 56(6): 3048-3053.
[2] Mesnager S. A New Family of Hyper-bent Boolean Functions in Polynomial form[C]//Proceedings of Twelfth International Conference on Cryptography and Coding: LNCS 5921. Heidelberg: Springer-Verlag, 2009: 402-417.
[3] Khoo K, Gong G, Stinson D R. A New Characterization of Semi-bent and Bent Functions on Finite Fields[J]. Des Codes Cryptogr, 2006, 38(2): 279-295.
[4] Charpin P, Pasalic E, Tavernier C. On Bent and Semi-bent Quadratic Boolean Functions[J]. IEEE Trans on Inf Theory, 2005, 51(12): 4286-4298.
[5] Matsui M. Linear Cryptanalysis Method for DES Cipher[C]//Proceedings of Advances in Cryptology-EUROCRYPT'1993: LNCS 765. Berlin: Springer-Verlag, 1993: 386-397.
[6] Gold R. Maximal Recursive Sequences with 3-valued Recursive Cross-correlation Functions[J]. IEEE Trans on Inf Theory, 1968, 14(1): 154-156.
[7] Boztas S, Kumar P V. Binary Sequences with Gold-like Correlation But Large Linear Span[J]. IEEE Trans on Inf Theory, 1994, 40(2): 532-537.
[8] Khoo K, Gong G, Stinson D R. A New Family of Gold-like Sequences[C]//Proceedings of IEEE Int Symp Information Theory. Switzerland: Lausanne, 2002: 181.
[9] Shparlinski I. On the Values of Kloosterman Sums[J]. IEEE Trans on Inf Theory, 2009, 55(6): 2599-2601.
[10] Mesnager S. A New Class of Bent Functions in Polynomial forms[C]//Proceedings of International Workshop on Coding and Cryptography. Bergen: Selmer Center, University of Bergen, 2009: 5-18.
[11] Dobbertin H, Leander G, Canteaut A, et al. Construction of Bent Functions Via Niho Power Functions[J]. J Comb Theory Ser A, 2006, 113(5): 779-798. |