[1] Kumar R, Novak J. On the Bursty Evolution of Blogspace [C]//The Twelfth International World Wide Web Conference. Budapest: ACM, 2003: 568-576.
[2] Gruhl D, Guha R, Kumar R, et al. The Predictive Power of Online Chatter [C]//The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago: ACM, 2005: 78-87.
[3] Mei Q, Zhai C. Discovering Evolutionary Theme Patterns from Text-An Exploration of Temporal Text Mining [C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia: ACM, 2005: 198-207.
[4] Pang B, Lee L. Opinion Mining and Sentiment Analysis [J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2): 1-135.
[5] Tang H, Tan S, Cheng X. A Survey on Sentiment Detection of Reviews [J]. Expert Systems with Applications, 2009, 36(7): 10760-10773.
[6] Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment Classification Using Machine Learning Techniques [C]//Proceedings of EMNLP 2002. Philadelphia: ACL, 2002: 79-86.
[7] Tan S, Zhang J. An Empirical Study of Sentiment Analysis for Chinese Documents [J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
[8] Carenini G, Ng R, Pauls A. Multi-Document Summarization of Evaluative Text [C]//Proceedings of the 11th European Chapter of the Association for Computational Linguistics. Trento: ACL, 2006: 3-7.
[9] Zhuang L, Jing F, Zhu X. Movie Review Mining and Summarization [C]//The 15th ACM International Conference on Information and Knowledge Management. Virginia: ACM, 2006: 43-50.
[10] Hu M, Liu B. Mining Opinion Features in Customer Reviews [C]//Proceedings of 19th National Conference on Artificial Intellgience. California: AAAI, 2004: 755-760.
[11] Carenini G, Ng R T, Zwart E. Extracting Knowledge from Evaluative Text [C]//Proceedings of the 3rd International Conference on Knowledge Capture 2005. Alberta: ACM, 2005: 11-18.
[12] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]//The 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2004. Washington: ACM, 2004: 168-177.
[13] 苏祺. 面向问答系统的情感倾向分析研究 [D]. 北京: 北京大学, 2006.
[14] Mei Q, Ling X, Wondra M, et al. Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs [C]//Proceedings of the World Wide Conference 2007. Alberta: ACM, 2007: 171-180.
[15] Lin C, He Y. Joint Sentiment/Topic Model for Sentiment Analysis [C]//The 18th ACM Conference on Information and Knowledge Management. Hong Kong: ACM, 2009: 375-384.
[16] Titov I, McDonald R. Modeling Online Reviews with Multi-Grain Topic Models [C]//The 17th International World Wide Web Conference 2008. Beijing: ACM, 2008: 111-120..
[17] Titov I, McDonald R. A Joint Model of Text and Aspect Ratings for Sentiment Summarization [C]//The 46th Meeting of Association for Computational Linguistics. Columbus: ACL, 2008: 308-316.
[18] Hofmann T. Unsupervised Learning by Probabilistic Latent Semantic Analysis [J]. Machine Learning, 2001(42): 177-196.
[19] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. Journal of Machine Learning Research, 2003, 3(4-5): 993-1022.
[20] Bishop C M. Pattern Recognition and Machine Learning [M]. Singapore: Springer Science, 2006.
[21] Griffiths T, Steyvers M. Finding Scientific Topics [C]//Proceedings of the National Academy of Sciences. Stanford: United States National Academy of Sciences, 2004: 5228-5235.
[22] Chang C C, Lin C J. LIBSVM: a Library for Support Vector Machines [CP/OL]. [2001-10-12]. www.csie.ntu.edu.tw/~cjlin/libsvm/. |