[1] Miekainen J, Toivanen P. Clustered DPCM for the Lossless Compression of Hyperspectral Images[J]. IEEE Trans on Geosci Remote Sensing, 2003, 41(12): 2943-2946.
[2] Zhang J, Liu G Z. A Novel Lossless Compression for Hyperspectral Images by Context-Based Adaptive Classified Arithmetic Coding in Wavelet Domain[J]. IEEE Geosci Remote Sensing Letters, 2007, 4(3): 461-465.
[3] Ryan M J, Arnold J F. The Lossless Compression of AVIRIS Images by Vector Quantization[J]. IEEE Trans on Geosci Remote Sensing, 1997, 35(3): 546-550.
[4] Candes E J. Compressive Sampling[C/OL]. [2009-06-20]. http://www-stat.stanford.edy/candes/papers/CompressiveSampling.pdf.
[5] Candes E J, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
[6] Donoho D L. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
[7] Romberg J. Imaging via Compressive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
[8] Candes E J, Tao T. Near Optical Signal Recovery from Random Projections: Universal Encoding[J]. IEEE Trans on Information Theory, 2006, 52(12):5406-5425.
[9] 刘丹华, 石光明, 周佳社, 等. 基于Compressed Sensing框架的图像多描述编码方法[J]. 红外与毫米波学报, 2009, 28(4): 298-302.
Liu Danhua, Shi Guangming, Zhou Jiashe, et al. New Method of Multiple Description Coding for Image Based on Compressed Sensing[J]. J Infrared Millim Waves, 2009, 28(4): 298-302.
[10] Gan L, Do T T, Tran T D. Fast Compressive Imaging Using Scrambled Block Hadamard Ensemble[C/OL]. [2009-08-16]. http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/srambled_blk_WHT.pdf.
[11] Figueiredo M A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
[12] Brites C, Ascenso J, Pereira F. Studying Temporal Correlation Noise Modeling for Pixel Based Wyner-ziv Video Coding[C]//IEEE International Conference of Image Processing. Atlanta: IEEE, 2006: 273-276. |