[1] Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction By Gene Expression Monitoring [J]. Science, 1999(286): 531-537.
[2] Guyon I, Weston J, Barnhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines [J]. Machine Learning, 2000, 46(1-3): 389-422.
[3] 李颖新, 刘全金, 阮晓钢. 一种肿瘤基因表达数据的知识提取方法[J]. 电子学报, 2004, 32(9): 1479-1482.
LI Yingxin, Liu Quanjin, Ruan Xiaogang. A Method for Extracting Knowledge from Tumor Gene Expression Data [J]. Acta Electronica Sinica, 2004, 32(9): 1479-1482.
[4] 李建中, 杨昆, 高宏, 等. 考虑样本不均衡的模型无关的基因选择方法[J]. 软件学报, 2006, 17(7): 1485-1493.
Li Jianzhong, Yang Kun, Gao Hong, et al. Model-Free Gene Selection Method by Considering Unbalanced Samples[J]. Journal of Software, 2006, 17(7): 1485-1493.
[5] 李颖新, 阮晓钢. 基于支持向量机的肿瘤分类特征基因选取[J]. 计算机研究与发展, 2005, 42(10): 1796-1801.
Li Yingxin, Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine [J] . Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
[6] 王文俊, 张军英. 一种新的基因表达数据聚类方法[J]. 西安电子科技大学学报, 2009, 39(3): 502-505.
Wang Wenjun, Zhang Junying. New Method for Clustering Gene Expression Data [J]. Journal of Xidian University, 2009, 39(3): 502-505.
[7] 宫改云, 毛用才, 高新波, 等. 基于模糊 C-均值聚类的微阵列基因表达数据分析[J]. 西安电子科技大学学报, 2004, 31(2): 291-295.
Gong Gaiyun, Mao Yongcai, Gao Xinbo, et al. Fuzzy c-mean Clustering Method for Analyzing Microarray Gene Expression Data [J]. Journal of Xidian University, 2004, 31(2): 291-295.
[8] 边肇祺, 张学工. 模式识别[M]. 2版. 北京: 清华大学出版社, 2000.
[9] Cortes C, Vapnik V. Support-vector Networks [J]. Machine Learning, 1995(20): 1779-1983.
[10] Musa H, Asyali, Dilek Colak, et al. Gene Expression Profile Classification: a Review [J]. Current Bioinformatics, 2006(1): 55-73.
[11] Furey T S, Cristianini N, Duffy N, et al. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data [J]. Bioinformatics, 2000, 16(10): 906-914.
[12] Huerta E B, Duval B, Hao J K. A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data [J]. Lecture Notes in Computer Science, 2006, 3907: 34-44.
[13] Wang Y, Makedon F, Ford J C, et al. Hykgene: a Hybrid Approach for sElecting Marker Genes for Phenotype Classification Using Microarray Gene Expression Data [J]. Bioinformatics, 2005, 21(8):1530-1537.
[14] Huerta E B, Duval B, Hao J K. A Hybrid LDA and Genetic Algorithm for Gene Selection and Classification of Microarray Data [J]. Neurocomputing, 2010(73): 2375-2383.
[15] Maldonado S, Weber R. Simultaneous Feature Selection and Classification Using Kernel-penalized Support Vector Machines [J]. Information Sciences, 2011(181): 115-128.
[16] 陈宝林. 最优化理论与算法[M]. 2版. 北京: 清华大学出版社, 2005. |