Journal of Xidian University ›› 2019, Vol. 46 ›› Issue (1): 64-72.doi: 10.19665/j.issn1001-2400.2019.01.011
Previous Articles Next Articles
AN Yali,ZHOU Shuisheng(),CHEN Li,WANG Baojun
Received:
2018-04-03
Online:
2019-02-20
Published:
2019-03-05
Contact:
Shuisheng ZHOU
E-mail:sszhou@mail.xidian.edu.cn
CLC Number:
AN Yali,ZHOU Shuisheng,CHEN Li,WANG Baojun. Robust support vector machines and their sparse algorithms[J].Journal of Xidian University, 2019, 46(1): 64-72.
"
算法 | Haber (204/120/3) | Inonspher (234/117/34) | Breast (455/228/10) | German (667/333/24) | Svmguide1 (3089/4000/4) |
---|---|---|---|---|---|
参数取值(τ,λ,σ) | |||||
LSSVM | (2-6,10-6,/) | (2-5,10-5,/) | (2-6,10-4,/) | (2-10,10-5,/) | (2,10-5,/) |
SR-LSSVM | (2-6,10-5,1.2) | (2-4,10-4,1.0) | (2-4,10-8,0.8) | (2-6,10-4,0.8) | (2,10-4,1.2) |
RSVM | (2-5,10-5,0.6) | (2-3,10-4,0.6) | (2-3,10-3,0.8) | (2-5,10-5,1.4) | (22,10-6,1.0) |
SR-SVM | (2-7,10-7,0.6) | (2-5,10-8,0.6) | (2-8,10-8,0.8) | (2-9,10-5,1.2) | (22,10-4,1.0) |
SER-LSSVM | (2-6,107,1.0) | (2-5,10-5,0.6) | (2-6,10-8,1.0) | (2-9,10-5,1.2) | (2,10-5,0.8) |
测试精度/% | |||||
LSSVM | 69.33(0.23) | 91.89 (0.73) | 96.20(0.62) | 72.98(0.94) | 80.19(1.01) |
SR-LSSVM | 74.82(0.87) | 92.49(0.94) | 96.89(1.01) | 75.96(0.96) | 88.24(0.66) |
RSVM | 70.59(0.97) | 92.79(1.24) | 95.52(0.79) | 75.11(0.76) | 89.57(0.45) |
SR-SVM | 76.17(0.75) | 93.01(0.77) | 97.07(0.46) | 77.01(0.42) | 90.99(0.30) |
SER-LSSVM | 76.53(0.65) | 93.29(0.85) | 97.37(0.39) | 77.09(0.39) | 90.87(0.25) |
训练时间/s | |||||
LSSVM | 0.040(0.014) | 0.098(0.076) | 0.294(0.244) | 2.112(1.210) | 2.001(0.110) |
SR-LSSVM | 0.002(0.001) | 0.003(0.001) | 0.022(0.007) | 0.039(0.005) | 0.078(0.008) |
RSVM | 0.843(0.210) | 0.201(0.125) | 1.294(0.457) | 9.921(0.919) | 37.24(1.406) |
SR-SVM | 0.002(0.000) | 0.003(0.000) | 0.021(0.003) | 0.036(0.003) | 0.067(0.014) |
SER-LSSVM | 0.001(0.000) | 0.002(0.000) | 0.022(0.008) | 0.032(0.003) | 0.064(0.020) |
"
算法 | Cod-RNA (59535/271617/8) | Ijcnn1 (49990/91701/22) | W8a (49749/14591/300) | Skin-nonskin (163371/81686/3) | Covtype (387341/193671/54) |
---|---|---|---|---|---|
参数取值(τ,λ,σ) | |||||
SR-LSSVM | (2-1,10-10,1.0) | (2-8,10-4,2.0) | (2-7,10-8,2.0) | (2-2,10-9,1.4) | (2-5,10-8,0.8) |
SR-SVM | (2-2,10-7,0.8) | (2-8,10-8,1.2) | (2-7,10-9,1.8) | (2-3,10-7,1.0) | (2-6,10-5,1.2) |
SER-LSSVM | (2-2,10-9,1.6) | (2-8,10-3,1.8) | (2-8,10-8,1.8) | (2-1,10-3,1.4) | (2-6,10-9,1.0) |
测试精度/% | |||||
SR-LSSVM | 96.03(0.01) | 94.92(0.03) | 98.05(0.00) | 99.89(0.01) | 87.92(0.04) |
SR-SVM | 96.59(0.02) | 94.99(0.03) | 98.14(0.01) | 99.91(0.01) | 87.67(0.48) |
SER-LSSVM | 97.06(0.01) | 94.98(0.02) | 98.19(0.01) | 99.95(0.00) | 87.96(0.01) |
训练时间/s | |||||
SR-LSSVM | 6.923(0.023) | 2.174(0.241) | 8.297(0.012) | 22.246(1.020) | 64.764(1.460) |
SR-SVM | 6.996(0.010) | 2.095(0.117) | 7.943(0.009) | 23.497(0.198) | 63.991(0.241) |
SER-LSSVM | 6.872(0.011) | 1.985(0.131) | 7.940(0.007) | 22.599(0.092) | 62.271(0.190) |
[1] |
VAPNIK V N . The Nature of Statistical Learning Theory[J]. Technometrics, 1996,38(4):400.
doi: 10.1080/00401706.1996.10484552 |
[2] |
孙颖, 宋春晓 . 相空间重构的情感语音特征提取及优化[J]. 西安电子科技大学学报, 2017,44(6):162-168.
doi: 10.3969/j.issn.1001-2400.2017.06.028 |
SUN Ying, SONG Chunxiao . Emotional Speech Feature Extraction and Optimization of Phase Space Reconstruction[J]. Journal of Xidian University, 2017,44(6):162-168.
doi: 10.3969/j.issn.1001-2400.2017.06.028 |
|
[3] |
韩冰, 贾中华, 高新波 . 改进的主成分分析网络极光图像分类方法[J]. 西安电子科技大学学报, 2017,44(1):83-88.
doi: 10.3969/j.issn.1001-2400.2017.01.015 |
HAN Bing, JIA Zhonghua, GAO Xinbo . Improved PCANet for Aurora Images Classification[J]. Journal of Xidian University, 2017,44(1):83-88.
doi: 10.3969/j.issn.1001-2400.2017.01.015 |
|
[4] |
李美玲, 胡耀垓, 周晨 , 等. 支持向量机用于电离层foF2的短期区域预报[J]. 西安电子科技大学学报, 2015,42(5):147-153.
doi: 10.3969/j.issn.1001-2400.2015.05.025 |
LI Meiling, HU Yaogai, ZHOU Chen , et al. On the Short-term Regional Prediction of foF2 Based on the Support Vector Machine[J]. Journal of Xidian University, 2015,42(5):147-153.
doi: 10.3969/j.issn.1001-2400.2015.05.025 |
|
[5] |
SUYKENS J A K, VANDEWALLE J . Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999,9(3):293-300.
doi: 10.1023/A:1018628609742 |
[6] |
GAO Y F, SHAN X, HU Z X , et al. Extended Compressed Tracking via Random Projection Based on MSERs and Online LS-SVM Learning[J]. Pattern Recognition, 2016,59:245-254.
doi: 10.1016/j.patcog.2016.02.012 |
[7] |
RIZVI S Z, VELNI J M, ABBASI F , et al. State-space LPV Model Identification Using Kernelized Machine Learning[J]. Automatica, 2018,88:38-47.
doi: 10.1016/j.automatica.2017.11.004 |
[8] |
SHEN X T, TSENG G C, ZHANG X G , et al. On ψ-Learning[J]. Journal of the American Statistical Association, 2003,98(463):724-734.
doi: 10.1198/016214503000000639 |
[9] |
WU Y C, LIU Y F . Robust Truncated Hinge Loss Support Vector Machines[J]. Journal of the American Statistical Association, 2007,102:974-983.
doi: 10.1198/016214507000000617 |
[10] |
WANG K N, ZHONG P . Robust Non-convex Least Squares Loss Function for Regression with Outliers[J]. Knowledge-Based Systems, 2014,71:290-302.
doi: 10.1016/j.knosys.2014.08.003 |
[11] |
CHEN L, ZHOU S S . Sparse Algorithm for Robust LSSVM in Primal Space[J]. Neurocomputing, 2018,275:2880-2891.
doi: 10.1016/j.neucom.2017.10.011 |
[12] |
FENG Y L, YANG Y, HUANG X L , et al. Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses[J]. Neural Computation, 2016,28(6):1217-1247.
doi: 10.1162/NECO_a_00837 pmid: 27137357 |
[13] |
YUILLE A, RANGARAJAN A . The Concave-convex Procedure[J]. Neural Computation, 2003,15(4):915-936.
doi: 10.1162/08997660360581958 |
[14] |
ZHOU S S . Sparse LSSVM in Primal Using Cholesky Factorization for Large Scale Problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016,27(4):783-795.
doi: 10.1109/TNNLS.2015.2424684 |
[15] | SCHÖLKOPF B, HERBRICH R, SMOLA A J. A Generalized Representer Theorem [C]// Lecture Notes in Computer Science: 2111. Heidelberg: Springer Verlag, 2001: 416-426. |
[16] |
LEE C P, LIN C J . A Study on L2-Loss (Squared Hinge-Loss) Multiclass SVM[J]. Neural Computation, 2013,25(5):1302-1323.
doi: 10.1162/NECO_a_00434 |
[17] |
PHAM DINH T, LE H M, LE THI H A , et al. A Difference of Convex Functions Algorithm for Switched Linear Regression[J]. IEEE Transactions on Automatic Control, 2014,59(8):2277-2282.
doi: 10.1109/TAC.2014.2301575 |
[18] |
HE B S, YUAN X M . On the O(1/n) Convergence Rate of the Douglas-rachford Alternating Direction Method[J]. SIAM Journal on Numerical Analysis, 2012,50(2):700-709.
doi: 10.1137/110836936 |
[19] |
SRIPERUMBUDUR B K, LANCKRIET G R G . A Proof of Convergence of the Concave-convex Procedure Using Zangwill’s Theory[J]. Neural Computation, 2012,24(6):1391-1407.
doi: 10.1162/NECO_a_00283 pmid: 22364501 |
[20] | SRIPERUMBUDUR B K, LANCKRIET G R G . On the Convergence of the Concave-convex Procedure [C]//Advances in Neural Information Processing Systems 22. Red Hook: Curran Associates Inc, 2009: 1759-1767. |
[1] | CHEN Rong,XU Hongli,YANG Dongxue,HUANG Hua. Dense three-dimensional reconstruction algorithm based on spatially encoded structured light [J]. Journal of Xidian University, 2021, 48(6): 123-130. |
[2] | LIU Yunrui,ZHOU Shuisheng. Application of least squares loss in the multi-view learning algorithm [J]. Journal of Xidian University, 2021, 48(6): 151-160. |
[3] | ZHANG Chunxiang,ZHOU Xuesong,GAO Xueyao,LIU Huan. Semi-supervised word sense disambiguation by combining k-means clustering and the LSTM network [J]. Journal of Xidian University, 2021, 48(6): 161-171. |
[4] | LI Yuan,CUI Yushuang,WANG Wei. Method for the analysis of text sentiment based on the word dual-channel network [J]. Journal of Xidian University, 2021, 48(6): 179-186. |
[5] | DAI Mingjun,LI Xiaofeng,DENG Haiyan,CHEN Bin. Private information retrieval with low encoding/decoding complexity [J]. Journal of Xidian University, 2021, 48(6): 212-220. |
[6] | TAN Wen,GAN Xinbiao,BAI Hao,XIAO Tiaojie,CHEN Xuguang,LEI Shumeng,LIU Jie. Optimization of large-scale graph traversal for supercomputers [J]. Journal of Xidian University, 2021, 48(6): 84-95. |
[7] | GU Zhaojun,CHEN Hui,WANG Jialiang,GAO Bing. Target tracking control algorithm for small size quad-rotor helicopter [J]. Journal of Xidian University, 2021, 48(5): 117-127. |
[8] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[9] | WANG Haijun,ZHANG Shengyan,DU Yujie. UAV object tracking via the correlation filter with the response divergence constraint [J]. Journal of Xidian University, 2021, 48(5): 149-155. |
[10] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[11] | CHENG De,HAO Yi,ZHOU Jingyu,WANG Nannan,GAO Xinbo. Cross-modality person re-identification utilizing the hybrid two-stream neural networks [J]. Journal of Xidian University, 2021, 48(5): 190-200. |
[12] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[13] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[14] | TIAN Chunna,YE Yanyu,SHAN Xiao,DING Yuxuan,ZHANG Xiangnan. Survey of self-supervised video representation learning [J]. Journal of Xidian University, 2021, 48(5): 222-230. |
[15] | WANG Junjun,SUN Yue,LI Ying. Cloud removal method for the remote sensing image based on the GAN [J]. Journal of Xidian University, 2021, 48(5): 23-29. |
|