Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (6): 151-160.doi: 10.19665/j.issn1001-2400.2021.06.019
• Computer Science and Technology • Previous Articles Next Articles
Received:
2020-09-09
Online:
2021-12-20
Published:
2022-02-24
Contact:
Shuisheng ZHOU
E-mail:2642911588@qq.com;sszhou@mail.xidian.edu.cn
CLC Number:
LIU Yunrui,ZHOU Shuisheng. Application of least squares loss in the multi-view learning algorithm[J].Journal of Xidian University, 2021, 48(6): 151-160.
"
AWA模型 | SVM+A | SVM+B | MVMED | RMvLSTSVM | SVM-2K | LSSVM-2KI | LSSVM-2KII | LSSVM-2K |
---|---|---|---|---|---|---|---|---|
Chi vs Leo | 80.62(0.54) | 84.62(0.46) | 81.51(0.52) | 83.53(0.55) | 84.60(0.79) | 89.63(0.37) | 84.52(0.38) | 85.84(0.52) |
Chi vs Rac | 74.46(0.67) | 84.17(0.44) | 79.43(0.71) | 74.66(0.76) | 64.93(0.79) | 86.91(0.54) | 85.53(0.76) | 84.89(0.44) |
Chi vs Zeb | 83.62(0.45) | 94.60(0.15) | 93.51(0.26) | 95.03(0.17) | 91.61(0.30) | 95.07(0.24) | 95.71(0.22) | 95.92(0.16) |
Leo vs Rac | 63.37(0.8) | 76.93(0.40) | 56.38(0.22) | 81.84(0.35) | 56.48(0.22) | 78.58(0.60) | 74.54(0.50) | 77.01(0.40) |
Leo vs Zeb | 78.07(0.42) | 90.66(0.30) | 86.94(0.59) | 92.11(0.38) | 86.49(0.76) | 91.42(0.37) | 90.94(0.43) | 90.68(0.36) |
Rac vs Zeb | 75.47(0.73) | 89.68(0.50) | 60.37(0.30) | 86.31(0.52) | 60.37(0.30) | 89.08(0.35) | 90.00(0.49) | 91.17(0.29) |
平均时间/s | 0.037 9 | 0.037 5 | 11.490 8 | 0.027 2 | 0.256 7 | 0.208 6 | 0.068 2 | 0.023 4 |
"
UCI模型 | SVM+A | SVM+B | MVMED | RMvLSTSVM | SVM-2K | LSSVM-2KI | LSSVM-2KII | LSSVM-2K |
---|---|---|---|---|---|---|---|---|
fac vs fou | 96.55(0.43) | 90.40(0.85) | 95.11(0.71) | 96.80(0.48) | 96.09(0.49) | 96.96(0.62) | 96.16(0.54) | 96.85(0.69) |
fac vs kar | 95.26(0.31) | 94.67(1.12) | 96.15(0.95) | 96.94(0.58) | 96.99(0.54) | 97.01(0.64) | 97.01(0.49) | 97.06(0.43) |
fac vs mor | 91.08(1.04) | 85.40(2.22) | 83.46(2.40) | 96.95(0.43) | 86.44(2.63) | 95.36(3.19) | 96.19(0.84) | 95.40(3.16) |
fac vs pix | 96.02(0.36) | 96.51(0.72) | 96.36(0.58) | 97.21(0.44) | 95.78(0.54) | 97.76(0.30) | 97.24(0.44) | 97.55(0.52) |
fac vs zer | 95.26(0.31) | 92.89(1.19) | 92.74(0.69) | 97.04(0.45) | 92.68(0.64) | 97.64(0.36) | 96.88(0.33) | 97.56(0.52) |
fou vs kar | 91.38(0.84) | 94.76(1.04) | 96.39(1.03) | 96.56(0.62) | 96.34(1.03) | 96.39(0.65) | 96.58(0.95) | 96.59(0.93) |
fou vs mor | 90.31(0.89) | 83.23(2.57) | 85.00(2.23) | 92.33(0.75) | 85.15(2.26) | 88.60(4.78) | 91.79(0.91) | 92.65(1.79) |
fou vs pix | 90.68(0.56) | 96.51(0.72) | 91.82(0.91) | 96.40(0.66) | 94.49(0.78) | 96.10(0.67) | 95.16(0.75) | 96.03(0.63) |
fou vs zer | 91.38(0.84) | 92.70(0.94) | 93.09(0.46) | 94.59(0.61) | 94.58(0.74) | 95.11(0.79) | 95.16(0.52) | 95.45(0.80) |
kar vs mor | 94.75(1.16) | 86.06(2.72) | 84.96(2.24) | 97.66(0.55) | 85.20(2.20) | 93.86(2.05) | 92.85(1.20) | 93.86(2.05) |
kar vs pix | 94.95(0.92) | 96.51(0.72) | 95.36(0.89) | 96.79(0.69) | 95.36(0.89) | 96.58(0.49) | 95.38(0.53) | 96.51(0.46) |
kar vs zer | 94.75(1.16) | 93.18(0.92) | 96.60(0.24) | 95.43(0.62) | 96.19(0.41) | 96.25(0.38) | 96.84(0.57) | 96.89(0.55) |
mor vs pix | 85.79(2.86) | 96.86(0.70) | 87.04(2.18) | 96.31(0.64) | 94.76(0.69) | 96.03(0.92) | 91.73(2.24) | 91.36(0.71) |
mor vs zer | 85.95(2.87) | 92.94(1.28) | 85.10(2.22) | 94.53(0.79) | 81.85(5.09) | 94.20(0.91) | 92.35(1.71) | 93.31(1.45) |
pix vs zer | 96.51(0.72) | 93.21(0.89) | 92.26(0.70) | 96.88(0.63) | 92.49(0.67) | 96.39(0.38) | 95.69(0.65) | 97.20(0.33) |
平均时间/s | 0.023 1 | 0.024 5 | 12.334 1 | 0.019 5 | 0.201 8 | 0.218 8 | 0.067 7 | 0.012 6 |
[1] |
KANG H, XIA L, YAN F, et al. Diagnosis of Coronavirus Disease 2019 (COVID-19) With Structured Latent Multi-View Representation Learning[J]. IEEE Transactions on Medical Imaging, 2020, 39(8):2606-2614.
doi: 10.1109/TMI.42 |
[2] |
CHEN D R, CHANG Y W, WU H K, et al. Multiview Contouring for Breast Tumor on Magnetic Resonance Imaging[J]. Journal of Digital Imaging, 2019, 32(5):713-727.
doi: 10.1007/s10278-019-00190-7 |
[3] |
WU H, ZHENG K, SFARRA S, et al. Multiview Learning for Subsurface Defect Detection in Composite Products:A Challenge on Thermographic Data Analysis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9):5996-6003.
doi: 10.1109/TII.9424 |
[4] |
LI J, ZHANG B, LUG, et al. Generative Multi-view and Multi-feature Learning for Classification[J]. Information Fusion, 2019, 45:215-226.
doi: 10.1016/j.inffus.2018.02.005 |
[5] |
WANG H, YANG Y, LIU B. GMC:Graph-based Multi-view Clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(6):1116-1129.
doi: 10.1109/TKDE.69 |
[6] |
WANG H, YANG Y, ZHANG X, et al. Parallel Multi-view Concept Clustering In Distributed Computing[J]. Neural Computing and Applications, 2020, 32(10):5621-5631.
doi: 10.1007/s00521-019-04243-4 |
[7] | DEEPAK P, ANNA J L. Linking and Mining Heterogeneous and Multi-view Data[M]. Bam:Springer Nature Switzerland AG, 2019:1-27. |
[8] | XU C, TAO D, XU C. A Survey on Multi-view Learning[J]. Neural Comput, 2013, 23(7):2031-2038. |
[9] | VAPNIK V, IZMAILOV R. Learning Using Privileged Information:Similarity Control and Knowledge Transfer[J]. Journal of Machine Learning Research, 2015, 16(1):2023-2049. |
[10] | GAMMERMAN A, VOVK V, PAPADOPOULOS H. Statistical Learning and Data Sciences[M]. Bam: Springer International Publishing AG, 2015:3-32. |
[11] | SHARMANSKA V, QUADRIANTO N, LAMPERT C H. Learning to Rank Using Privileged Information[C]// IEEE International Conference on Computer Vision:107.Piscataway:IEEE, 2013:825-832. |
[12] |
HE Y, TIAN Y, LIU D. Multi-view Transfer Learning With Privileged Learning Framework[J]. Neurocomputing, 2019, 335(28):131-142.
doi: 10.1016/j.neucom.2019.01.019 |
[13] | CHAO G, SUN S. Consensus and Complementarity Based Maximum Entropy Discrimination for Multi-view Classification[J]. Information Sciences, 2016, 367:296-310. |
[14] | SUN S, CHAO G. Multi-View Maximum Entropy Discrimination[C]// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. California: AAAI Press, 2013:1706-1712. |
[15] |
XIE X. Regularized Multi-view Least Squares Twin Support Vector Machines[J]. Applied Intelligence, 2018, 48(9):3108-3115.
doi: 10.1007/s10489-017-1129-3 |
[16] |
AKAHO S. A Kernel Method for Canonical Correlation Analysis[EB/OL]. [2020-08-28].DOI: 10.1007/s10489-013-0464-2.
doi: 10.1007/s10489-013-0464-2 |
[17] |
HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Canonical Correlation Analysis:An Overview with Application to Learning Methods[J]. Neural Computation, 2014, 16(12):2639-2664.
doi: 10.1162/0899766042321814 |
[18] | FARQUHAR J, HARDOON D, MENG H, et al. Two View Learning:SVM-2K,Theory and Practice[J]. Advances in Neural Information Processing Systems, 2005, 18:355-362. |
[19] |
HUANG C, CHUNG F, WANG S. Multi-view L2-SVM and Its Multi-view Core Vector Machine[J]. Neural Networks:the Official Journal of the International Neural Network Society, 2015, 75:110-125.
doi: 10.1016/j.neunet.2015.12.004 |
[20] |
TANG J, TIAN Y, LIU D, et al. Coupling Privileged Kernel Method for Multi-view Learning[J]. Information Sciences, 2019, 481:110-127.
doi: 10.1016/j.ins.2018.12.058 |
[21] |
SUYKENS J A K, VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
doi: 10.1023/A:1018628609742 |
[22] | ZHOU S. Sparse LSSVM in Primal Using Cholesky Factorization for Large-Scale Problems[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(4):783-795. |
[23] | STEINWART I, HUSH D, SCOVEL C. Training SVMs without Offset[J]. Journal of Machine Learning Research, 2011, 12(1):141-202. |
[24] | SHAI S, SHAI B. Understanding Machine Learning:From Theory to Algorithms[M]. Cambridge: Cambridge University Press, 2014:202-215. |
[1] | CHEN Rong,XU Hongli,YANG Dongxue,HUANG Hua. Dense three-dimensional reconstruction algorithm based on spatially encoded structured light [J]. Journal of Xidian University, 2021, 48(6): 123-130. |
[2] | ZHANG Chunxiang,ZHOU Xuesong,GAO Xueyao,LIU Huan. Semi-supervised word sense disambiguation by combining k-means clustering and the LSTM network [J]. Journal of Xidian University, 2021, 48(6): 161-171. |
[3] | LI Yuan,CUI Yushuang,WANG Wei. Method for the analysis of text sentiment based on the word dual-channel network [J]. Journal of Xidian University, 2021, 48(6): 179-186. |
[4] | DAI Mingjun,LI Xiaofeng,DENG Haiyan,CHEN Bin. Private information retrieval with low encoding/decoding complexity [J]. Journal of Xidian University, 2021, 48(6): 212-220. |
[5] | TAN Wen,GAN Xinbiao,BAI Hao,XIAO Tiaojie,CHEN Xuguang,LEI Shumeng,LIU Jie. Optimization of large-scale graph traversal for supercomputers [J]. Journal of Xidian University, 2021, 48(6): 84-95. |
[6] | GU Zhaojun,CHEN Hui,WANG Jialiang,GAO Bing. Target tracking control algorithm for small size quad-rotor helicopter [J]. Journal of Xidian University, 2021, 48(5): 117-127. |
[7] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[8] | WANG Haijun,ZHANG Shengyan,DU Yujie. UAV object tracking via the correlation filter with the response divergence constraint [J]. Journal of Xidian University, 2021, 48(5): 149-155. |
[9] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[10] | CHENG De,HAO Yi,ZHOU Jingyu,WANG Nannan,GAO Xinbo. Cross-modality person re-identification utilizing the hybrid two-stream neural networks [J]. Journal of Xidian University, 2021, 48(5): 190-200. |
[11] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[12] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[13] | TIAN Chunna,YE Yanyu,SHAN Xiao,DING Yuxuan,ZHANG Xiangnan. Survey of self-supervised video representation learning [J]. Journal of Xidian University, 2021, 48(5): 222-230. |
[14] | WANG Junjun,SUN Yue,LI Ying. Cloud removal method for the remote sensing image based on the GAN [J]. Journal of Xidian University, 2021, 48(5): 23-29. |
[15] | YANG Jingbo,ZHAO Qijun,LYU Zejun. Synthesis of the expression image and its application under the dimentional emotion model [J]. Journal of Xidian University, 2021, 48(5): 30-37. |
|