[1] Munk B A. Freuuency Selective Surface: Theory and Design[M]. New York: John Wiley & Sons Incorporated, 2000.
[2] 唐光明, 苗俊刚, 董金明, 等. 一种性能稳定的新Y形单元厚屏频率选择表面[J]. 物理学报, 2012, 61(11): 118401.
Tang Guangming, Miao Jungang, Dong Jinming, et al. A Novel Y Element Thick-screen Frequency Selective Surfaces with Stable Performance[J]. Acta Physica Sinica, 2012, 61(11): 118401.
[3] Costa F, Monorchio A. A Frequency Selective Radome With Wideband Absorbing Properties[J]. IEEE Transactions Antennas and Propagation, 2012, 60(6): 2740-2747.
[4] Zhu B, Wang Z, Huang C, et al. Polarization Intsensitive Metamaterial Absorber with Wide Incident Angle[J]. Progress in Electromagnetics Research, 2010, 101: 231-239.
[5] Ma Y, Chen Q, Grant J, et al. A Terahertz Polarization Insensitive Dual Band Metamaterial Absorber[J]. Optics Letters, 2011, 36(6): 945-947.
[6] Li Hui, Yuan Lihua, Zhou Bin, et al. Ultrathin Multiband Gigahertz Metamaterial Absorbers[J]. Journal of Applied Physics, 2011, 110(1): 014909.
[7] Luo Hao, Wang Tao, Gong Rongzhou, et al. Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber[J]. Chinese Physics Letters, 2011, 28(3): 034204.
[8] 刘涛, 曹祥玉, 高军, 等. 基于超材料的吸波体设计及其波导缝隙天线应用[J]. 物理学报, 2012, 61(18): 184101.
Liu Tao, Cao Xiangyu, Gao Jun, et al. Design of Metamaterial Absorber and Its Applications for Waveguide Slot Antenna[J]. Acta Physica Sinica, 2012, 61(18): 184101.
[9] 龚琦, 张帅, 龚书喜, 等. 利用高阻抗表面减缩天线雷达散射截面的新方法[J]. 西安电子科技大学学报, 2012, 39(3): 134-140.
Gong Qi, Zhang Shuai, Gong Shuxi, et al. Application of the High Impedance Surface for RCS Reduction of Antenna[J]. Journal of Xidian University, 2012, 39(3): 134-140.
[10] Toubet M S, Hajj M, Chantalat R, et al. Wide Bandwidth, High-Gain, and Low-Profile EBG Prototype for High Power Applications[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1362-1365.
[11] Weily A R, Bird T S, Guo Y J. A Reconfigurable High-Gain Partially Reflecting Surface Antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3382-3390.
[12] Moustafa L, Jecko B. Desigh of a Wideband Highly Directive EBG Antenna Using Double-Layer Frequency Selective Surfaces and Multifeed Technique for Application in the Ku-Band[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 342-346.
[13] Zhou Bin, Cui Tiejun. Directivity Enhancement to Vivaldi Antennas Using Compactly Anisotropic Zero-Index Metamaterials[J]. IEEE Antennas and Propagation Letters, 2011, 10: 326-329.
[14] Chung K L, Chaimool S. Broadside Gain and Bandwidth Enhancement of Microstrip Patch Antenna Using a MNZ-metasurface[J]. Microwave and Optical Technology Letters, 2012, 54(2): 529-532.
[15] Ge Yuehe, Esselle K P, Bird T S. The Use of Simple Thin Partially Reflective Surfaces With Positive Reflection Phase Gradients to Design Wideband, Low-Profile EBG Resonator Antennas[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 743-750.
[16] Foroozesh A, Shafai L. On the Characteristics of the Highly Directive Resonant Cavity Antenna Having Metal Strip Grating Superstrate[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 78-91.
[17] James J R, Kinany S J A, Peel P D, et al. Leaky-wave Multiple Dichroic Beamformers[J]. Electronics Letters, 1989, 25(18): 1209-1211.
[18] Feresidis A P, Vardaxoglou J C. High Gain Planar Antenna Using Optimized Partially Reflective Surfaces[J]. IEE Proceedings: Microwaves, Antennas and Propagation, 2001, 148(6): 345-350.
[19] Luo H, Cheng Y Z, Gong R Z. Numerical Study of Metamaterial Absorber and Extending Absorbance Bandwidth Based on Multi-square Patches[J]. European Physical Journal B, 2011, 81(4): 387-392. |