[1] Seifeldin M, Saeed A, Kosba A E, et al. Nuzzer: A Large-Scale Device-Free Passive Localization System for Wireless Environments [J]. IEEE Transactions on Mobile Computing, 2013, 12(7): 1321-1334.
[2] Wang J, Fang D Y, Chen X J. LCS: Compressive Sensing based Device-Free Localization for Multiple Targets in Sensor Networks [C]//Proceedings of IEEE International Conference on Computer Communications. Piscataway: IEEE, 2013: 145-149.
[3] Zhang D, Ma J, Chen Q B, et al. An RF-based System for Tracking Transceiver-free Objects [C]//Proceedings of IEEE International Conference on Pervasive Computing and Communications. Los Alamitos: IEEE, 2007: 135-144.
[4] Zhang D, Ni L M. Dynamic Clustering for Tracking Multiple Transceiver-free Objects [C]//Proceedings of International Conference on Pervasive Computing and Communications. Piscataway: IEEE, 2009: 1-8.
[5] Chintalapudi K, Iyer A P, Padmanabhan V N. Indoor Localization Without the Pain [C]//Proceedings of the Annual International Conference on Mobile Computing and Networking. New York: ACM, 2010: 173-184.
[6] Salman N, Ghogho M, Kemp A H. On the Joint Estimation of the RSS-based Location and Path-loss Exponent[J]. IEEE Wireless Communications Letters, 2012, 1(1): 34-37.
[7] 辛云宏, 杨万海. 基于伪线性卡尔曼滤波的两站红外无源定位及跟踪技术 [J]. 西安电子科技大学学报, 2004, 31(4): 505-508.
Xin Yunhong, Yang Wanhai. Pseudo-linear Kalman Filter Based Passive Location and Tracking Techniques by Two Infrared Stations [J]. Journal of Xidian University, 2004, 31(4): 505-508.
[8] Theodore S. Rappaport, Wireless Communications: Principles and Practice[M]. London: Prentice-Hall, 1996.
[9] Park J G, Curtis D, Teller S, et al. Implications of Device Diversity for Organic Localization [C]//Proceedings of IEEE International Conference on Computer Communications. Piscataway: IEEE, 2011: 3182-3190.
[10] Zhang D, Liu Y H, Guo X N, et al. RASS: A Real-time, Accurate and Scalable System for Tracking Transceiver-free Objects [J]. IEEE Transactions on Parallel and Distributed systems, 2013, 24(5): 996-1008. |