Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (2): 118-125.doi: 10.19665/j.issn1001-2400.2020.02.016
Previous Articles Next Articles
JIANG Shaobin,DU Chun,CHEN Hao,LI Jun,WU Jiangjiang
Received:
2019-09-04
Online:
2020-04-20
Published:
2020-04-26
CLC Number:
JIANG Shaobin,DU Chun,CHEN Hao,LI Jun,WU Jiangjiang. Unsupervised adversarial learning method for hard disk failure prediction[J].Journal of Xidian University, 2020, 47(2): 118-125.
[1] | BOTEZATU M, GIURGIU I, BOGOJESKA J , et al. Predicting Disk Replacement Towards Reliable Data Centers[C]// Proceedings of the 2016 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 39-48. |
[2] | Lifeline Data Centers What Data Center Downtime Costs [EB/OL]. [2019-05-10]. https://lifelinedatacenters.com/data-center/data-center-downtime-costs/. |
[3] | MURRAYJ F, HUGHES G F, KREUTZ-DELGADO K . Machine Learning Methods for Predicting Failures in Hard Drives: a Multiple-instance Application[J]. Journal of Machine Learning Research, 2005,6:783-816. |
[4] | SHEN J, WAN J, LIM S J , et al. Random-forest-based Failure Prediction for Hard Disk Drives[J]. International Journal of Distributed Sensor Networks, 2018,14(11):1-15. |
[5] | DOS SANTOS LIMA F D, FALCAO PEREIRA F L, CASTRO CHAVES I , et al. Evaluation of Recurrent Neural Networks for Hard Disk Drives Failure Prediction[C]// Proceedings of the 2018 Brazilian Conference on Intelligent Systems. Piscataway: IEEE, 2018: 85-90. |
[6] | ZHANG S D, BAHRAMPOUR S, RAMAKRISHNAN N , et al. Deep Learning on Symbolic Representations for Large-scale Heterogeneous Time-series Event Prediction[C]// Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2017: 5970-5974. |
[7] | AUSSEL N, JAULIN S, GANDON G , et al. Predictive Models of Hard Drive Failures Based on Operational Data[C]// Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2017: 619-625. |
[8] | AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P . GANomaly: Semi-supervised Anomaly Detection via Adversarial Training[C]// Lecture Notes in Computer Science: 11363. Heidelberg: Springer Verlag, 2019: 622-637. |
[9] | AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P . Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-decoder Anomaly Detection[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 8851808. |
[10] | ZHU B P, WANG G, LIU X G , et al. Proactive Drive Failure Prediction for Large Scale Storage Systems[C]// Proceedings of the 2013 IEEE Symposium on Mass Storage Systems and Technologies. Washington: IEEE Computer Society, 2013: 6558427. |
[11] | ZHANG J G, WANG J, HE L F , et al. Layerwise Perturbation-based Adversarial Training for Hard Drive Health Degree Prediction[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 1428-1433. |
[12] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M , et al. Generative Adversarial Nets[C]// Advances in Neural Information Processing Systems: 3. Vancouver: Neural Information Processing Systems Foundation, 2014: 2672-2680. |
[13] | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M , et al. f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks[J]. Medical Image Analysis, 2019,54:30-44. |
[14] | ZENATI H, FOO C S, LECOUAT B , et al. Efficient Gan-based Anomaly Detection[J/OL]. [2019-06-20]. https://arxiv.org/abs/1802.06222. |
[15] | HYLAND S, ESTEBAN C, RÄTSCH G . Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs[J/OL].[2019-06-20]. https://arxiv.org/abs/1706.02633. |
[16] | LI D, CHEN D, GOH J , et al. Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series[J/OL]. [2019-06-20]. https://www.researchgate.net/publication/327643901. |
[17] | LI D, CHEN D, JIN B , et al. MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]// Lecture Notes in Computer Science: 11730. Heidelberg: Springer Verlag, 2019: 703-716. |
[18] | SCHÖLKOPF B, WILLIAMSON R, SMOLA A , et al. Support Vector Method for Novelty Detection[C]// Advances in Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2000: 582-588. |
[19] | LIU F T, TING K M, ZHOU Z H . Isolation Forest[C]// Proceedings of the 2008 IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 413-422. |
[20] | Scikit-learn.[EB/OL].[2019-06-20]. https://scikit-learn.org/stable/index.html. |
[21] | Backblaze. Hard Drive Data and Stats.[DS/OL]. [2019-06-05]. https://www.backblaze.com/b2/hard-drive-test-data.html. |
[1] | YU Haoyang,YIN Liang,LI Shufang,LV Shun. Recognition algorithm for the little sample radar modulation signal based on the generative adversarial network [J]. Journal of Xidian University, 2021, 48(6): 96-104. |
[2] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[3] | TIAN Chunna,YE Yanyu,SHAN Xiao,DING Yuxuan,ZHANG Xiangnan. Survey of self-supervised video representation learning [J]. Journal of Xidian University, 2021, 48(5): 222-230. |
[4] | WANG Junjun,SUN Yue,LI Ying. Cloud removal method for the remote sensing image based on the GAN [J]. Journal of Xidian University, 2021, 48(5): 23-29. |
[5] | YANG Jingbo,ZHAO Qijun,LYU Zejun. Synthesis of the expression image and its application under the dimentional emotion model [J]. Journal of Xidian University, 2021, 48(5): 30-37. |
[6] | ZHANG Hongwei,TAN Quanlu,LU Shuai,GE Zhiqiang,XU Jian. Yarn-dyed shirt piece defect detection based on an unsupervised reconstruction model of the U-shaped denoising convolutional auto-encoder [J]. Journal of Xidian University, 2021, 48(3): 123-130. |
[7] | WEI Ziyu,YANG Xi,WANG Nannan,YANG Dong,GAO Xinbo. Reciprocal bi-directional generative adversarial network for cross-modal pedestrian re-identification [J]. Journal of Xidian University, 2021, 48(2): 205-212. |
[8] | ZHANG Zhiyuan,DIAO Yinghua. Pedestrian trajectory prediction model with social features and attention [J]. Journal of Xidian University, 2020, 47(1): 10-17. |
[9] | YANG Xiaoli,LIN Suzhen. Method for multi-band image feature-level fusion based on the attention mechanism [J]. Journal of Xidian University, 2020, 47(1): 120-127. |
[10] | JIA Yufeng,MA Li. Self-attention generative adversarial network with the conditional constraint [J]. Journal of Xidian University, 2019, 46(6): 163-171. |
[11] | SHEN Haijie,BIAN Qian,CHEN Xiaofan,WANG Zhenduo,TIAN Xinzhi. Video deblurring using the generative adversarial network [J]. Journal of Xidian University, 2019, 46(6): 112-117. |
[12] | HU Mengxiao,LU Wang,XU Can,LAI Jiazhe. Satellite RCS anomaly detection using the GRU model [J]. Journal of Xidian University, 2019, 46(6): 125-130. |
[13] | MO Jianwen,XU Kailiang,LIN Leping,OUYANG Ning. Text-to-image generation combined with mutual information maximization [J]. Journal of Xidian University, 2019, 46(5): 180-188. |
[14] | CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi. Face image super-resolution with an attention mechanism [J]. Journal of Xidian University, 2019, 46(3): 148-153. |
[15] | TIAN Yuling. Dendritic cell algorithm for time series oriented anomaly detection [J]. J4, 2014, 41(4): 144-150. |
|