[1] |
ZHOU Y, SHI H, ZHAO Y, et al. Encrypted Network Traffic Identification Based on 2D-CNN Model[C]//2021 22nd Asia-Pacific Network Operations and Management Symposium(APNOMS). Piscataway: IEEE, 2021:238-241.
|
[2] |
曾勇, 吴正远, 董丽华, 等. 加密流量中的恶意流量识别技术[J]. 西安电子科技大学学报, 2021, 48(3):170-187.
|
|
ZENG Yong, WU Zhengyuan, DONG Lihua, et al. Research on Malicious Traffic Identification Technology in Encrypted Traffic[J]. Journal of XIDIAN University, 2021, 48(3):170-187.
|
[3] |
ZHU X F, SHU N, WANG H X, et al. A Distributed Traffic Classification Model Based on Federated Learning[C]//2021 7th International Conference on Big Data Computing and Communications(BigCom). Piscataway: IEEE, 2021:75-81.
|
[4] |
YANG Z, CHEN M, WONG KK, et al. Federated Learning for 6G:Applications,Challenges,and Opportunities[J]. Engineering, 2022, 8(1):33-41.
doi: 10.1016/j.eng.2021.12.002
|
[5] |
王坤庆, 刘婧, 李晨, 等. 联邦学习安全威胁综述[J]. 信息安全研究, 2022, 8(3):223-234.
|
|
WANG Kunqing, LI Jing, LI Chen, et al. A Survey on Threats to Federated Learning[J]. Journal of Information Securyity Research, 2022, 8(3):223-234.
|
[6] |
CHEN Y, SU L, XU J. Distributed Statistical Machine Learning in Adversarial Settings:Byzantine Gradient Descent[J]. Proc.ACM Meas.Anal.Comput.Syst., 2017, 1(2):44.1-44.25.
|
[7] |
YIN D, CHEN Y, RAMCHANDRAN K, et al. Defending Against Saddle Point Attack in Byzantine-Robust DistributedLearning.[C]// Proceedings of the 36th International Conference on Machine Learning. San Diego: ICML, 2019:7074-7084.
|
[8] |
NGUYEN T D, RIEGER P, YALAME H, et al. Flguard:Secure and Private Federated Learning[J/OL].[2022-01-01].https://arxiv.org/abs/2101.02281v5.
|
[9] |
CAO X, JIA J, GONG N Z. ProvablySecure Federated Learning Against Malicious Clients[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(8):6885-6893.
doi: 10.1609/aaai.v35i8.16849
|
[10] |
TSAI JJ P, YU P S. Machine Learning in Cyber Trust[M]. Berlin:Springer, 2009:17-51.
|
[11] |
BARACALDO N, CHEN B, LUDWIG H, et al. MitigatingPoisoning Attacks on Machine Learning Models:A Data Provenance Based Approach[C]// Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2017:103-110.
|
[12] |
RAJPUT S, WANG H, CHARLES Z, et al. DETOX:ARedundancy-Based Framework for Faster and More Robust Gradient Aggregation[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York: ACM, 2019:10320-10330.
|
[13] |
FANG M, CAO X, JIA J, et al. LocalModel Poisoning Attacks to Byzantine-Robust Federated Learning[C]//29th USENIX Security Symposium. Berkeley: USENIX, 2020:1623-1640.
|
[14] |
MCMAHAN H, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[J/OL].[2022-01-01].https://arxiv.org/abs/1602.05629v3.
|
[15] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
|
[16] |
RUBINSTEIN R. TheCross-Entropy Method for Combinatorial and Continuous Optimization[J]. Methodology and Computing in Applied Probability, 1999, 1(2):127-190.
doi: 10.1023/A:1010091220143
|
[17] |
MONTAVON G, ORR G B, MüLLER K R. Neural Networks:Tricks of the Trade[M].Second Edition. Berlin: Springer, 2012:421-436.
|
[18] |
LI S, CHENG Y, LIU Y, et al. AbnormalClient Behavior Detection in Federated Learning[J/OL].[2022-01-01].https://arxiv.org/abs/1910.09933.
|
[19] |
XIAO H, XIAO H, ECKERT C. Adversarial Label Flips Attack on Support Vector Machines[C]//Proceedings of the 20th European Conference on Artificial Intelligence. New York: ACM, 2012:870-875.
|
[20] |
LASHKARI A H, KAUR G, RAHALI A. DIDarknet:A Contemporary Approach to Detect and Characterize the Darknet Traffic Using Deep Image Learning[C]//Proceedings of the 2020 10th International Conference on Communication and Network Security. New York: ACM, 2020:1-13.
|