[1] |
DONG S, WANG P, ABBAS K. A Survey on Deep Learning and its Applications[J]. Computer Science Review, 2021,40:100379.
|
[2] |
SU Y, LI Y, ZHANG K, et al. A Privacy-Preserving Public Integrity Check Scheme for Outsourced EHRs[J]. Information Sciences, 2021,542:112-130.
|
[3] |
BOERMAN S C, KRUIKEMEIER S, ZUIDERVEEN BORGESIUS F J. Exploring Motivations for Online Privacy Protection Behavior:Insights from Panel Data[J]. Communication Research, 2021, 48(7):953-977.
|
[4] |
WANG Z, CHENGN X, SU S, et al. ATLAS:GAN-Based Differentially Private Multi-Party Data Sharing[J]. IEEE Transactions on Big Data, 2023, 9(4):1225-1237.
|
[5] |
RATHER I H, KUMAR S. Generative Adversarial Network Based Synthetic Data Training Model for Lightweight Convolutional Neural Networks[J]. Multimedia Tools and Applications, 2024,83:6249-6271.
|
[6] |
ZHANG F, ZHANG Y, ZHANG X. Desensitization Method of Meteorological Data Based on Differential Privacy Protection[J]. Journal of Cleaner Production, 2023,389:136117.
|
[7] |
ZIGOMITROS A, CASINO F, SOLANAS A, et al. A Survey on Privacy Properties for Data Publishing of Relational Data[J]. IEEE Access, 2020,8:51071-51099.
|
[8] |
POVEDA J I, KRSTIĆ M, BAŞAR T. Fixed-Time Nash Equilibrium Seeking in Non-Cooperative Games[C]//2020 59th IEEE Conference on Decision and Control(CDC).Piscataway:IEEE, 2020: 3514-3519.
|
[9] |
杜明洋, 杜蒙, 潘继飞, 等. 基于生成对抗网络的雷达脉内信号去噪与识别[J]. 西安电子科技大学学报, 2023, 50(6):133-147.
|
|
DU Mingyang, DU Meng, PAN Jifei, et al. Generative Adversarial Model for Radar Intra-Pulse Signal Denoising and Recognition[J]. Journal of Xidian University, 2023, 50(6):133-147.
|
[10] |
DOUZAS G, BACAO F. Effective Data Generation for Imbalanced Learning Using Conditional Generative Adversarial Networks[J]. Expert Systems with Applications, 2018,91:464-471.
|
[11] |
CHEN M, CANG L S, CHANG Z, et al. Data Anonymization Evaluation Against Re-Identification Attacks in Edge Storage(2023)[J/OL].[2023-02-21]. https://link.springer.com/article/10.1007/s11276-023-03235-6.
|
[12] |
NI C, CANG L S, GOPE P, et al. Data Anonymization Evaluation for Big Data and IoT Environment[J]. Information Sciences, 2022,605:381-392.
|
[13] |
PATKI N, WEDGE R, VEERAMACHANENI K. The Synthetic Data Vault[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).Piscataway:IEEE, 2016: 399-410.
|
[14] |
NEELI J, PATIL S. Insight to Security Paradigm,Research Trend & Statistics in Internet of Things(IoT)[J]. Global Transitions Proceedings, 2021, 2(1):84-90.
|
[15] |
KOUACHI A I, SAHRAOUI S, BACHIR A. Per Packet Flow Anonymization in 6lowpan Iot Networks[C]//2018 6th International Conference on Wireless Networks and Mobile Communications(WINCOM).Piscataway:IEEE, 2018: 1-7.
|
[16] |
CARUCCIO L, DESIATO D, POLESE G, et al. A Decision-Support Framework for Data Anonymization with Application to Machine Learning Processes[J]. Information Sciences, 2022,613:1-32.
|
[17] |
SARKER I H. Deep Learning:A Comprehensive Overview on Techniques,Taxonomy,Applications and Research Directions[J]. SN Computer Science, 2021, 2(6):420.
|