[1]Witten I H, Frank E. Data Mining: Pracitcal Machine Learning Tools and Techniques [M]. Sna Francisco: Morgan Kaufmann Publishers, 2005.
[2]Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring [J]. Science, 1999, 286(5439): 531-537.
[3]Karypis G, Han E H, Kumar V. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling[J]. Journal of Computer Using Dynamic Modeling, IEEE Computer, 1999, 32(8): 68-75.
[4]Eisen M B, Spellman P T. Cluster Analysis and Display of Genome-wide Expression Ppatterns [J]. The National Academy of Science, 1998, 95(25): 14863-14868.
[5]Herwig R, Poustka A J. Large-scale Clustering of cDNA-fingerprinting Data [J]. The National Academy of Science, 1999, 9(11): 1093-1105.
[6]Kohonen T. The Self-Organizing Map [J]. Proc IEEE, 1990, 78(9): 1464-1480.
[7]宫改云, 毛用才, 高新波, 等. 模糊c-均值聚类的微阵列基因表达数据分析[J]. 西安电子科技大学学报, 2004, 31(2): 291-295.
Gong Gaiyun, Mao Yongcai, Gao Xinbo, et al. Fuzzy C-mean Clustering Method for Analyzing Microarray Gene Expression data[J]. Journal of Xidian University, 2004, 31(2): 291-295.
[8]Rougemont J, Hingamp P. DNA Microarray Data and Contextual Analysis of Correlation Graphs [J]. BMC Bioinformatics, 2003, 4(1): 15.
[9]Qu Yi, Xu Shizhong. Supervised Cluster Analysis for Microarray Data Based on Multivariate Gaussian Mixture [J]. Bioinformatics, 2004, 20(12): 1905-1913.
[10]Herrero J, Valencia A, Dopazo J. A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns [J]. Bioinformatics, 2001, 17(2):126-136. |