[1] Chan T, Shen J. Mathematical Models of Local Non-Texture Inpaintings [J]. SIAM Journal on Applied Mathematics, 2002, 62(3): 1019-1043.
[2] 许建楼, 冯象初, 郝岩. 二阶总广义变分图像修复模型及其算法[J]. 西安电子科技大学学报, 2012, 39(5): 18-23.
Xu Jianlou. Feng Xiangchu, Hao Yan. Second Order Total Generalized Variational Inpainting Model and Its Algorithm [J]. Journal of Xidian University, 2012, 39(5): 18-23.
[3] Bertalmio M, Vese L, Sapiro G, et al. Simultaneous Structure and Texture Image Inpainting [J]. IEEE Transactions on Image Processing, 2003, 12(8): 882-889.
[4] Cai J F, Ji H, Liu C, et al. Framelet Based Blind Motion Deblurring from A Single Image [J]. IEEE Transactions on Image Processing, 2012, 21(2): 562-572.
[5] Elad M, Starck J L, Querre P, et al. Simultaneous Cartoon and Texture Image Inpainting Using Morphological Component Analysis (MCA) [J]. Applied and Computational Harmonic Analysis, 2005, 19(3): 340-358.
[6] Cai J F, Dong B, Osher S. Image Restoration: Total Variation; Wavelet Frames; and Beyond [J]. Journal of American Mathematical Society, 2012, 25(4): 1033-1089.
[7] Cai J F, Chan R H, Shen Z. Simultaneous Cartoon and Texture Inpainting [J]. Inverse Problem Imaging, 2010, 4(3): 379-395.
[8] Candes E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C2 Singularities [J]. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.
[9] Daubechies I, Han B, Ron A. Framelets: MRA-based Constructions of Wavelet Frames [J]. Applied Computational Harmonic Analysis, 2003, 14(1): 1-46.
[10] Yu Guoshen, Sapiro G, Mallat S. Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity [J]. IEEE Transactions on Image Processing, 2012, 21(5): 2481-2499.
[11] Chan R H, Chan T F, Shen L, et al. Wavelet Algorithms for High Resolution Image Reconstruction [J]. SIAM Journal on Scientific Computing, 2003, 24(4): 1408-1432.
[12] Chartrand R. Nonconvex Splitting for Regularized Low-Rank+Sparse Decomposition [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810-5819.
[13] Chartrand R, Sidky E Y, Pan Xiaochuan. Frequency Extrapolation by Nonconvex Compressive Sensing [C]//IEEE International Symposium on Biomedical Imaging. Piscataway: IEEE, 2011: 1056-1060.
[14] Chartrand R, Staneva V. Restricted Isometry Properties and Nonconvex Compressive Sensing [J]. Inverse Problems, 2008, 24(3): 20-35.
[15] Ron A, Shen Z. Affine Systems in L2(Rd) the Analysis of the Analysis Operator [J]. Journal of Functional Analysis, 1997, 148(2): 408-447.
[16] Donoho D. For Most Large Underdetermined Systems of Linear Equations, the Minimal l1-norm Solution is Also the Sparsest Solution[J]. Communications on Pure and Applied Mathematics,2006, 59(6): 797-829.
[17] Xu Zongben, Chang Xiangyu, Xu Fengmin. L-1/2 Regularization: a Thresholding Representation Theory and a Fast Solver [J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013-1027.
[18] Meinshausen N, Yu B. Lasso-Type Recovery of Sparse Representations for High-Dimensional Data [J]. The Annals of Statistics, 2009, 37(1): 246-270.
[19] Combettes P L, Wajs V R. Signal Recovery by Proximal Forward-Backward Splitting [J]. Multiscale Modeling & Simulation, 2005, 4(4): 1168-1200. |