[1] |
YANG Y C, GAO Z C . A New Method for Control Allocation of Aircraft Flight Control System[J]. IEEE Transactions on Automatic Control ( Early Access ), 2019, DOI: 10.1109/TAC.2019.2918122.
|
[2] |
ORLANDO C, ESPOSITO A, ALAIMO A . An Alternative Tuning Scheme for Simple Adaptive Flight Control System[J]. Journal of Physics: Conference Series, 2019,1215(1):012015.
|
[3] |
MA Z, LI H, GU Y , et al. Flight and Hover Control System Design for a Mini-quadrotor Based on Multi-sensors[J]. International Journal of Control, Automation, and Systems, 2019,17(2):486-499.
|
[4] |
THEIL S, AMMANN N, ANDERT F , et al. ATON (Autonomous Terrain-based Optical Navigation) for Exploration Missions: Recent Flight Test Results[J]. CEAS Space Journal, 2018,10(3):325-341.
|
[5] |
ZHANG Ying, ZHANG Xing, CAO Jian , et al. Processor Free Time Forcasting Based on Convolutional Neural Network[C]// 第37届中国控制会议论文集(F). 北京: 中国自动化学会控制理论专业委员会, 2018: 9331-9336.
|
[6] |
LI Y, ZHANG Y, XIE W C . Joint Transmit-receive Subarray Syconfproc Optimization for Hybid MIMO Phased-array Radar[C]// 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2017, DOI: 10.1109/CISP-BMEI.2017.8302148.
|
[7] |
ZHANG Y, TAO L Y, WANG S H , et al. A redundant fault-tolerant aviation control system based on deep neural network[C]// Proceedings of 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE, 2019: 475-480.
|
[8] |
ZHANG Y, CAO J, TAO L Y , et al. An Improved Deep Q-learning for Intelligent Transmitter Control System[C]// Lecture Notes in Electrical Engineering: 594. Heidelberg: Springer Verlag, 2020: 344-351.
|
[9] |
张英, 戚红向, 李毅 , 等. 捷联惯导系统的一种标定方法[J]. 导弹与航天运载技术, 2018,12(s2):57-60.
|
|
ZHANG Ying, QI Hongxiang, LI Yi , et al. A Calibration Method of Strapdown Inertial Navigation System[J]. Missiles and Space Vehicles, 2018,12(s2):57-60.
|
[10] |
张英, 戚红向, 李毅 , 等. 一种四元数描述刚体姿态的方法[J]. 导弹与航天运载技术, 2018,12(s2):61-65.
|
|
ZHANG Ying, QI Hongxiang, LI Yi , et al. A Quaternion Method for Describing Rigid Body Attitude)[J]. Missiles and Space Vehicles, 2018,12(s2):61-65.
|
[11] |
CHANG Y X, ZHANG Y, LIAO L W , et al. IP Softcore for a Bubbling Convolutional Accelerator in a Neural Net Work[J]. Electronics World, 2019,125(1993):34-37.
|
[12] |
ZHANG Q, CAO J, ZHANG Y , et al. FPGA Implementation of Quantized Convolutional Neural Networks[C]// Proceedings of 2019 IEEE International Conference on Communication Technology. Piscataway: IEEE, 2019: 1605-1610.
|
[13] |
张文柱, 邵丽娜 . 异构无线网络中基于强化学习的频谱管理算法[J]. 西安电子科技大学学报, 2011,38(4):32-37.
|
|
ZHANG Wenzhu, SHAO Li’na . Dynamic Spectrum Allocation Algorithm for Heterogeneous Radio Networks Based on Reinforcement Learning[J]. Journal of Xidian University, 2011,38(4):32-37.
|
[14] |
马卓然, 马建峰, 苗银宾 , 等. 无人机网络中基于状态迁移的访问控制模型[J]. 西安电子科技大学学报, 2018,45(6):44-50.
|
|
MA Zhuoran, MA Jianfeng, MIAO Yinbing , et al. State Transition-based Access Control Model in the UAV Network[J]. Journal of Xidian University, 2018,45(6):44-50.
|
[15] |
MIROWSKI P, PASCANU R, VIOLA F , et al. Learning to Navigate in Complex Environments[C]// Conference Track Proceedings of the 2017 5th International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2019: 149804.
|
[16] |
YAHYA A, LI A, KALAKRISHNAN M , et al. Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search[C]// Proceedings of the 2017 IEEE International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 79-86.
|
[17] |
DUAN Y, CHEN X, HOUTHOOFT R , et al. Benchmarking Deep Reinforcement Learning for Continuous Control[C]// Proceedings of the 2016 33rd International Conference on Machine Learning. Lille: International Machine Learning Society, 2016: 2001-2014.
|
[18] |
LEE A X, LEVINE S, ABBEEL P . Learning Visual Servoing with Deep Features and Fitted Q-iteration[C]// Conference Track Proceedings of the 2017 5th International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2019: 149804.
|
[19] |
MAHLER J, LIANG J, NIYAZ S , et al. Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds andAnalytic Grasp Metrics[J]. Robotics: Science and Systems, 2017,13(1):136707 .
|
[20] |
PEREZ-D’ARPINO C, SHAH J A . C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-step Manipulation in Shared Autonomy[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 4058-4065.
|
[21] |
ZHANG C, LI P, SUN G Y , et al. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks[C]// Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: ACM, 2015: 161-170.
|
[22] |
SUDA N, CHANDRA V, DASIKA G , et al. Throughput-optimized OpenCL-based FPGA Accelerator for Large-scale Convolutional Neural Networks[C]// Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: ACM, 2016: 16-25
|
[23] |
GSCHWEND D . ZynqNet: An FPGA-accelerated Embedded Convolutional Neural Network[D]. Zürich: ETH Zurich. 2016.
|