[1] |
VERBERT K, MANOUSELIS N, OCHOA X, et al. Context-Aware Recommender Systems for Learning:A Survey and Future Challenges[J]. IEEE Transactions on Learning Technologies, 2012, 5(4):318-335.
doi: 10.1109/TLT.2012.11
|
[2] |
BELLOGíN A, SAID A. Information Retrieval and Recommender Systems (Data Science in Practice)[M]. Heidelberg:Springer, 2019.
|
[3] |
LEAMING P M, MACKEY L. Collaborative Filtering[J]. Computer ence, 2017, 57(4):189.
|
[4] |
LINDEN G, SMITH B, YORK J, et al. Amazon.com Recommendations:Item-to-Item Collaborative Filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80.
doi: 10.1109/MIC.2003.1167344
|
[5] |
LEE S K, CHO Y H, KIM S H. Collaborative Filtering with Ordinal Scale-Based Implicit Ratings for Mobile Music Recommendations[J]. Information Sciences, 2010, 180(11):2142-2155.
doi: 10.1016/j.ins.2010.02.004
|
[6] |
SU J H, CHIU T W. An Item-Based Music Recommender System Using Music Content Similarity[C]// Asian Conference on Intelligent Information and Database Systems.Heidelberg:Springer, 2016:179-190.
|
[7] |
LI W, ZHOU X, SHIMIZU S, et al. Personalization Recommendation Algorithm Based on Trust Correlation Degree and Matrix Factorization[J]. IEEE Access, 2019, 7:45451-45459.
doi: 10.1109/ACCESS.2018.2885084
|
[8] |
BOBADILLA J, SERRADILLA F, BERNAL J. A New Collaborative Filtering Metric that Improves The Behavior of Recommender Systems[J]. Knowledge-Based Systems, 2010, 23(6):520-528.
doi: 10.1016/j.knosys.2010.03.009
|
[9] |
LIU H, HU Z, MIAN A, et al. A New User Similarity Model to Improve the Accuracy of Collaborative Filtering[J]. Knowledge-Based Systems, 2014, 56:156-166.
doi: 10.1016/j.knosys.2013.11.006
|
[10] |
LI B, ZHU X, LI R, et al. Rating Knowledge Sharing in Cross-Domain Collaborative Filtering[J]. IEEE Transactions on Cybernetics, 2017, 45(5):1068-1082.
doi: 10.1109/TCYB.2014.2343982
|
[11] |
KOREN Y, BELL R, VOLINSKY C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8):30-37.
|
[12] |
MANZATO M. Discovering Latent Factors from Movies Genres for Enhanced Recommendation[C]// Proceedings of the 6th ACM Conference on Recom-mender Systems. New York: ACM, 2012:249-252.
|
[13] |
QIN J, CAO L, PENG H. Collaborative Filtering Recommendation Algorithm Based on Weighted Item Category[C]// 2016 Chinese Control and Decision Conference (CCDC).Piscataway:IEEE, 2016:2782-2786.
|
[14] |
CHEN C, ZHANG M, LIU Y, et al. Neural Attentional Rating Regression with Review-Level Explanations[C]// Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018:1583-1592.
|
[15] |
XUE F HE X, WANG X, et al. Deep Item-Based Collaborative Filtering for Top-N Recommendation[J/OL]. [2020-12-20]. DOI: 10.48550/arXiv.1811.04392.
doi: 10.48550/arXiv.1811.04392
|
[16] |
HE X, HE Z, DU X, et al. Adversarial Personalized Ranking for Recommendation[C/OL]. [2020-12-22]. https://www.xueshufan.com/publication/3099988866.
|
[17] |
WANG X, HE X, WANG M, et al. Neural Graph Collaborative Filtering[C/OL]. [2020-12-21]. Staff.ustc.edu.cn/-hexn/papers/sigir19-NGCF.pdf.
|
[18] |
GOU J, LAN D, ZHANG Y, et al. A New Distance-Weighted k-Nearest Neighbor Classifier[J]. Journal of Information & Computational Science, 2012, 9(6):1429-1436.
|
[19] |
YU Z, CHEN H, LIU J, et al. Hybrid k-Nearest Neighbor Classifier[J]. IEEE Transactions on Cybemetics, 2015, 46(6):1263-1275.
|
[20] |
GUO X, YIN S C, ZHANGY W, et al. Cold Start Recommendation Based on Attribute-Fused Singular Value Decomposition[J]. IEEE Access, 2019, 7:11349-11359.
doi: 10.1109/ACCESS.2019.2891544
|
[21] |
JIANG B, LUO Y. Matrix Factorization Based Instrumental Variable Approach for Simultaneous Identification of Bi-Directional Path Models[J]. ISA Transactions, 2018, 79:73-82.
doi: 10.1016/j.isatra.2018.04.018
|
[22] |
CHEN S, PENG Y. Matrix Factorization for Recommendation with Explicit and Implicit Feedback[J]. Knowledge Based Systems, 2018, 158:109-117.
doi: 10.1016/j.knosys.2018.05.040
|
[23] |
CHEN C, ZHANG M, ZHANG Y, et al. Efficient Neural Matrix Factorization without Sampling for Recommendation[J]. ACM Transactions on Information Systems, 2020, 38(2):1-28.
|
[24] |
PARVIN H, MORADIA P, ESMAEILI S, et al. A Scalable and Robust Trust-Based Nonnegative Matrix Factorization Recommender Using The Alternating Direction Method[J]. Knowledge-Based Systems, 2019, 166:92-107.
doi: 10.1016/j.knosys.2018.12.016
|
[25] |
DENG S, HUANG L, XU G, et al. On Deep Learning for Trust-Aware Recommendations in Social Networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(5):1164-1177.
|
[26] |
KOREN Y. Factorization Meets the Neighborhood:A Multifaceted Collaborative Filtering Model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008:426-434.
|
[27] |
SALAKHUTDINOV R, MNIH A. Probabilistic Matrix Factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. New York: ACM, 2007:1257-1264.
|
[28] |
NGUYEN J, ZHU M. Content-Boosted Matrix Factorization Techniques for Recommender Systems[J]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2013, 6(4):286-301.
doi: 10.1002/sam.11184
|