[1] |
FOGGIA P, SAGGESE A, VENTO M. Real-Time Fire Detection for Video-Surveillance Applications Using a Combination of Experts Based on Color,Shape,and Motion[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2015, 25(9):1545-1556.
|
[2] |
HASHEMZADEH M, ZADEMEHDI A. Fire Detection for Video Surveillance Applications Using ICA K-Medoids-Based Color Model and Efficient Spatio-Temporal Visual Features[J]. Expert Systems with Applications, 2019, 130:60-78.
doi: 10.1016/j.eswa.2019.04.019
|
[3] |
何爱龙, 陈美娟. 基于多特征融合的视频火灾检测方法[J]. 软件导刊, 2020, 19(7):198-203.
|
|
HE Ailong, CHEN Meijuan. Video Fire Detection Method Based on Multi-feature Fusion[J]. Software Guide, 2020, 19(7):198-203.
|
[4] |
MUHAMMAD K, AHMAD J, LV Z, et al. Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2018, 49(7):1419-1434.
doi: 10.1109/TSMC.2018.2830099
|
[5] |
张为, 魏晶晶. 嵌入DenseNet结构和空洞卷积模块的改进YOLO v3火灾检测算法[J]. 天津大学学报:自然科学与工程技术版, 2020, 53(9):976-983.
|
|
ZHANG Wei, WEI Jingjing. Improved YOLOv3 Fire Detection Algorithm Embedded in DenseNet Structure and Dilated Convolution Module[J]. Journal of Tianjin University:Science and Technology, 2020, 53(9):976-983.
|
[6] |
宁阳, 杜建超, 韩硕, 等. 改进 DeeplabV3+ 的火焰分割与火情分析方法[J]. 西安电子科技大学学报, 2021, 48(5):38-46.
|
|
NING Yang, DU Jianchao, HAN Shuo, et al. Fire Segmentation Based on the Improved DeeplabV3+ and the Analytical Method for Fire Development[J]. Journal of Xidian University, 2021, 48(5):38-46.
|
[7] |
JEON M, CHOI H S, LEE J, et al. Multi-Scale Prediction for Fire Detection Using Convolutional Neural Network[J]. Fire Technology, 2021, 57(5):2533-2551.
doi: 10.1007/s10694-021-01132-y
|
[8] |
CHAO X C, SHANG W, ZHANG F. Information-Guided Flame Detection Based on Faster R-CNN[J]. IEEE Access, 2020, 8:58923-58932.
doi: 10.1109/ACCESS.2020.2982994
|
[9] |
TIAN Z, SHEN C, CHEN H, et al. FCOS:Fully Convolutional One-Stage Object Detection[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2019:9627-9636.
|
[10] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|
[11] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:2117-2125.
|
[12] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:2980-2988.
|
[13] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized Intersection over Union:A Metric and A Loss for Bounding Box Regression[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:658-666.
|
[14] |
PANG J, CHEN K, SHI J, et al. Libra R-CNN:Towards Balanced Learning for Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:821-830.
|
[15] |
ZHU B, WANG J, JIANG Z, et al. AutoAssign:Differentiable Label Assignment for Dense Object Detection (2020)[J/OL].[2020-07-07]. https://arxiv.org/pdf/2007.03496v3.pdf.
|
[16] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. Advances in neural information processing systems, 2015, 28:91-99.
|
[17] |
REDMON J, FARHADI A. Yolov3:An Incremental Improvement (2018)[J/OL].[2018-04-08]. https://arxiv.org/pdf/1804.02767v1.pdf.
|
[18] |
ZHU C, HE Y, SAVVIDES M. Feature Selective Anchor-Free Module for Single-Shot Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:840-849.
|
[19] |
KONG T, SUN F, LIU H, et al. FoveaBox:BeyoundAnchor-Based Object Detection[J]. IEEE Transactions on Image Processing, 2020, 29:7389-7398.
doi: 10.1109/TIP.2020.3002345
|
[20] |
DI LASCIO R, GRECO A, SAGGESE A, et al. Improving Fire Detection Reliability by A Combination of Videoanalytics[C]// International Conference Image Analysis and Recognition.Heidelberg:Springer, 2014:477-484.
|