Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (4): 121-131.doi: 10.19665/j.issn1001-2400.2023.04.012
• Special Issue on Cyberspace Security • Previous Articles Next Articles
LI Haiyang1(),GUO Jingjing1(),LIU Jiuzun1(),LIU Zhiquan2,3()
Received:
2023-01-15
Online:
2023-08-20
Published:
2023-10-17
Contact:
Jingjing GUO
E-mail:ocean5160@163.com;jjguo@xidian.edu.cn;jzliu@stu.xidian.edu.cn;zqliu@jnu.edu.cn
CLC Number:
LI Haiyang,GUO Jingjing,LIU Jiuzun,LIU Zhiquan. Privacy preserving byzantine robust federated learning algorithm[J].Journal of Xidian University, 2023, 50(4): 121-131.
"
分类 | 特征 | 方法 |
---|---|---|
N1 | 数据量层面非独立同分布,数据标签类别层面独立同分布 | 假设数据集有n条数据,平均分为p个分片,则每个分片有n/p条数据;给每个节点随机分配rp,rp∈[0,p]个分片的数据 |
N2 | 数据量层面独立同分布,数据标签类别层面非独立同分布 | 假设数据集的标签有c类,每一类标签都分配cm条数据;给每个节点随机分配rc,rc∈[0,c]类的数据 |
N3 | 数据量和数据标签类别层面都非独立同分布 | 假设数据集的标签有c类,每一类标签设置cm条数据,再将每一类数据分为cp个分片,则每一类数据的分片有cm/cp条数据,首先给每个节点随机分rc,rc∈[0,c]类数据,然后针对每类数据随机分rp,rp∈[0,cp]个分片的数据 |
[1] | 李志鹏, 国雍, 陈耀佛, 等. 基于数据生成的类别均衡联邦学习[J]. 计算机学报, 2023, 46(3):609-625. |
LI Zhipeng, GUO Yong, Chen Yaofo, et al. Class-Balanced Federated Learning Base on Data Generation[J]. Chinese Journal of Computers, 2023, 46(3):609-625. | |
[2] | 李荣昌, 刘涛, 郑海斌, 等. 基于最大最小策略的纵向联邦学习隐私保护方法 (2023)[J/OL].[2023-03-19].https://doi.org/10.16383/j.aas.c211233. |
LI Rongchang, LIU Tao, ZHENG Haibing, et al. Privacy Preserving Method for Vertical Federated Leanig Base on Max-Min Strategy (2023)[J/OL].[2023-03-19].https://doi.org/10.16383/j.aas.c211233. | |
[3] |
KAIROUZ P, MCMAHAN B, AVENT B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1-2):1-210.
doi: 10.1561/2200000083 |
[4] | 顾育豪, 白跃彬. 联邦学习模型安全与隐私研究进展 (2023)[J/OL].[2023-03-19]. http://www.jos.org.cn/1000-9825/6658.htm. |
GU Yuhao, BAI Yuebing. Survey on Security and Privacy of Federated Learning Models (2023)[J/OL].[2023-03-19]. http://www.jos.org.cn/1000-9825/6658.htm. | |
[5] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2):346-362. |
LIU Junxv, MENG Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2):346-362. | |
[6] | 谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7):2127-2156. |
TAN Zuowen, ZHANG Lianfu. Survey on Privacy Preserving Techniques for Machine Learning[J]. Journal of Software, 2020, 31(7):2127-2156. (in Chinese) | |
[7] | 纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述[J]. 软件学报, 2021, 32(1):41-67. |
JI Shouling, DU Tianyu, LI Jinfeng, et al. Security and Privacy of Machine Learning Models:A Survey[J]. Journal of Software, 2021, 32(1):41-67. (in Chinese) | |
[8] |
LIU X, LI H, XU G, et al. Adaptive Privacy-Preserving Federated Learning[J]. Peer-to-Peer Networking and Applications, 2020, 13(6):2356-2366.
doi: 10.1007/s12083-019-00869-2 |
[9] |
WEI K, LI J, DING M, et al. User-Level Privacy-Preserving Federated Learning:Analysis and Performance Optimization[J]. IEEE Transactions on Mobile Computing, 2021, 21(9):3388-3401.
doi: 10.1109/TMC.2021.3056991 |
[10] | SHEJWALKAR V, HOUMANSADR A. Manipulating the Byzantine:Optimizing Model Poisoning Attacks and Defenses for Federated Learning[C]// Network and Distributed Systems Security (NDSS) Symposium 2021. San Diego: NDSS, 2021:1-19. |
[11] | GU Z, HE L, LI P, et al. FREPD:A Robust Federated Learning Framework on Variational Autoencoder[J]. Computer Systems:Science & Engineering, 2021, 39(3):307-320. |
[12] | LI S, CHENG Y, WANG W, et al. Learning to Detect Malicious Clients for Robust Federated Learning (2020)[J/OL].[2020-02-01]. https://arxiv.org/abs/2002.00211v1. |
[13] | ZHAO Y, CHEN J, ZHANG J, et al. PDGAN:A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network[C]// Algorithms and Architectures for Parallel Processing:19th International Conference,ICA3PP 2019.Heidelberg:Springer, 2020:595-609. |
[14] | ZHAO Y, CHEN J, ZHANG J, et al. Detecting and Mitigating Poisoning Attacks in Federated Learning Using Generative Adversarial Networks[J]. Concurrency and Computation:Practice and Experience, 2022, 34(7):1-12. |
[15] | 顾兆军, 刘婷婷, 隋翯. 一种ICS异常检测的优化GAN模型[J]. 西安电子科技大学学报, 2022, 49(2):172-181. |
GU Zhaojun, LIU Tingting, SUI He. Latent Feature Reconstruction Generative GAN Model for ICS Anomaly Detection[J]. Journal of Xidian University, 2022, 49(2):172-181. | |
[16] | CAO X, FANG M, LIU J, et al. FLTrust:Byzantine-Robust Federated Learning via Trust Bootstrapping[C]// Network and Distributed Systems Security (NDSS) Symposium 2021. San Diego: NDSS, 2021:1-18. |
[17] | 邬开俊, 梅源. VAE-Fuse:一种无监督的多聚焦融合模型[J]. 西安电子科技大学学报, 2022, 49(6):129-138. |
WU Kaijun, MEI Yuan. VAE-Fuse:An Unsupervised Multi-Focus Fusion Model[J]. Journal of Xidian University, 2022, 49(6):129-138. | |
[18] | 陈永, 牛凯玉, 康婕. LSTM循环神经网络的高速铁路越区切换算法[J]. 西安电子科技大学学报, 2023, 50(1):76-84. |
CHENG Yong, NIU Kaiyu, KANG Jie. Handover Algorithm fora High-Speed Railway Based on the LSTM Recurrent Neural Network[J]. Journal of Xidian University, 2023, 50(1):76-84. | |
[19] | 黄茜茜. 基于差分隐私保护的不均衡数据联邦学习方法[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
[20] | BLANCHARD P, MAHDI E, GUERRAOUI R, et al. Machine Learning with Adversaries:Byzantine Tolerant Gradient Descent[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:118-128. |
[21] | YIN D, CHEN Y, RAMCHANDRAN K, et al. Byzantine-Robust Distributed Learning:Towards Optimal Statistical Rates (2018)[C/OL].[2018-03-05]. https://arxiv.org/abs/1803.01498. |
[22] |
SO J, GÜLER B, AVESTIMEHR A S. Byzantine-Resilient Secure Federated Learning[J]. IEEE Journal on Selected Areas in Communications, 2021: 39(7):2168-2181.
doi: 10.1109/JSAC.2020.3041404 |
[23] | DONG Y, CHEN X, LI K, et al. FLOD:Oblivious Defender for Private Byzantine-Robust Federated Learning with Dishonest-Majority[C]// Computer Security-ESORICS 2021:26th European Symposium on Research in Computer Security.Heidelberg:Springer, 2021:497-518. |
[1] | WANG Yuhua,GAO Sheng,ZHU Jianming,HUANG Chen. Efficient deep learning scheme with adaptive differential privacy [J]. Journal of Xidian University, 2023, 50(4): 54-64. |
[2] | XU Mengfan,LI Xinghua. Privacy-preserving federated learning with non-transfer learning [J]. Journal of Xidian University, 2023, 50(4): 89-99. |
[3] | YANG Xiaohui,ZHUANG Haijing. Anonymous communication model with dynamic negotiation of identifiers [J]. Journal of Xidian University, 2023, 50(4): 100-110. |
[4] | WANG Fangwei,XIE Meiyun,LI Qingru,WANG Changguang. Differentially private federated learning framework with adaptive clipping [J]. Journal of Xidian University, 2023, 50(4): 111-120. |
[5] | DING Hongfa,TANG Mingli,LIU Hai,JIANG Heling,FU Peiwang,YU Yingying. Model for protection of k-degree anonymity privacy under neighbor subgraph disturbance [J]. Journal of Xidian University, 2023, 50(4): 180-193. |
[6] | YAN Yan,DONG Zhuoyue,XU Fei,FENG Tao. Localized location privacy protection method using the Hilbert encoding [J]. Journal of Xidian University, 2023, 50(2): 147-160. |
[7] | GU Zhaojun,LIU Tingting,SUI He. Latent feature reconstruction generative GAN model for ICS anomaly detection [J]. Journal of Xidian University, 2022, 49(2): 173-181. |
[8] | XU Hua,TIAN Youliang. Protection of privacy of the weighted social network under differential privacy [J]. Journal of Xidian University, 2022, 49(1): 17-25. |
[9] | JIANG Shaobin,DU Chun,CHEN Hao,LI Jun,WU Jiangjiang. Unsupervised adversarial learning method for hard disk failure prediction [J]. Journal of Xidian University, 2020, 47(2): 118-125. |
[10] | HU Mengxiao,LU Wang,XU Can,LAI Jiazhe. Satellite RCS anomaly detection using the GRU model [J]. Journal of Xidian University, 2019, 46(6): 125-130. |
[11] | KANG Haiyan;XIONG Li. Enhancing user privacy for personalized web search in big data [J]. J4, 2014, 41(5): 148-154+160. |
[12] | TIAN Yuling. Dendritic cell algorithm for time series oriented anomaly detection [J]. J4, 2014, 41(4): 144-150. |
|